Use the equation I/PT = R I is the interest P is the money before investment and T is the time
P= 2.5m + 35 (replace p with 115)
115= 2.5m + 35 (subract 35 from each side)
115 - 35 = 2.5m
80 = 2.5m (divide 2.5 from each side)
80/2.5= 2.5m/2.5
32 = m
The price of the materials is $32
The cost of parking is an initial cost plus an hourly cost.
The first hour costs $7.
You need a function for the cost of more than 1 hour,
meaning 2, 3, 4, etc. hours.
Each hour after the first hour costs $5.
1 hour: $7
2 hours: $7 + $5 = 7 + 5 * 1 = 12
3 hours: $7 + $5 + $5 = 7 + 5 * 2 = 17
4 hours: $7 + $5 + $5 + $5 = 7 + 5 * 3 = 22
Notice the pattern above in the middle column.
The number of $5 charges you add is one less than the number of hours.
For 2 hours, you only add one $5 charge.
For 3 hours, you add two $5 charges.
Since the number of hours is x, according to the problem, 1 hour less than the number of hours is x - 1.
The fixed charge is the $7 for the first hour.
Each additional hour is $5, so you multiply 1 less than the number of hours,
x - 1, by 5 and add to 7.
C(x) = 7 + 5(x - 1)
This can be left as it is, or it can be simplified as
C(x) = 7 + 5x - 5
C(x) = 5x + 2
Answer: C(x) = 5x + 2
Check:
For 2 hours: C(2) = 5(2) + 2 = 10 + 2 = 12
For 3 hours: C(3) = 5(3) + 2 = 15 + 2 = 17
For 4 hours: C(3) = 5(4) + 2 = 20 + 2 = 22
Notice that the totals for 2, 3, 4 hours here
are the same as the right column in the table above.
Answer:
14 1/30
Step-by-step explanation:
convert the fractions so that the LCF is the denominator
1/5---->6/30
5/6----->25/30
5 6/30+8 25/30
13 31/30
14 1/30