Answer:
Yes we reject the null hypothesis
Step-by-step explanation:
From the question we are told that
The sample size is ![n = 9](https://tex.z-dn.net/?f=n%20%20%3D%209)
The population mean is ![\mu = 40](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%2040)
The sample mean is ![\= x = 33](https://tex.z-dn.net/?f=%5C%3D%20%20x%20%20%3D%20%2033)
The standard deviation is ![\sigma = 9](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%209)
The level of significance is ![\alpha = 0.05](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%200.05)
For a two-tailed test
The null hypothesis is ![H_o : \mu = 40](https://tex.z-dn.net/?f=H_o%20%3A%20%20%5Cmu%20%20%3D%20%2040)
The alternative hypothesis is ![H_a : \mu \ne 40](https://tex.z-dn.net/?f=H_a%20%20%3A%20%20%5Cmu%20%5Cne%20%2040)
Generally the test statistics is mathematically represented as
![t = \frac{\= x - \mu }{ \frac{\sigma}{\sqrt{n} } }](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%5C%3D%20%20x%20%20-%20%20%5Cmu%20%7D%7B%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D)
=> ![t = \frac{ 33 - 40 }{ \frac{9}{\sqrt{9} } }](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%2033%20%20-%20%2040%20%7D%7B%20%5Cfrac%7B9%7D%7B%5Csqrt%7B9%7D%20%7D%20%7D)
=> ![t = -2.33](https://tex.z-dn.net/?f=t%20%3D%20%20-2.33)
The p-value for the two-tailed test is mathematically represented as
![p-value = 2 P(z > |-2.33|)](https://tex.z-dn.net/?f=p-value%20%3D%20%202%20P%28z%20%3E%20%7C-2.33%7C%29)
From the z-table
![P(z > |-2.33|) = 0.01](https://tex.z-dn.net/?f=P%28z%20%3E%20%7C-2.33%7C%29%20%20%3D%20%200.01)
![p-value = 2 * 0.01](https://tex.z-dn.net/?f=p-value%20%3D%20%202%20%2A%200.01)
![p-value = 0.02](https://tex.z-dn.net/?f=p-value%20%3D%20%20%200.02)
Given that
Then we reject the null hypothesis