1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
10

(1 point) The matrix A=⎡⎣⎢−4−4−40−8−4084⎤⎦⎥A=[−400−4−88−4−44] has two real eigenvalues, one of multiplicity 11 and one of multip

licity 22. Find the eigenvalues and a basis of each eigenspace. λ1λ1 = equation editorEquation Editor has multiplicity 11, with a basis of equation editorEquation Editor . λ2λ2 = equation editorEquation Editor has multiplicity 22, with a basis of equation editorEquation Editor .
Mathematics
1 answer:
serious [3.7K]3 years ago
8 0

Answer:

We have the matrix A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]

To find the eigenvalues of A we need find the zeros of the polynomial characteristic p(\lambda)=det(A-\lambda I_3)

Then

p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda

Now, we fin the zeros of p(\lambda).

p(\lambda)=-\lambda^3-8\lambda^2-16\lambda=0\\\lambda(-\lambda^2-8\lambda-16)=0\\\lambda_{1}=0\; o \; \lambda_{2,3}=\frac{8\pm\sqrt{8^2-4(-1)(-16)}}{-2}=\frac{8}{-2}=-4

Then, the eigenvalues of A are \lambda_{1}=0 of multiplicity 1 and \lambda{2}=-4 of multiplicity 2.

Let's find the eigenspaces of A. For \lambda_{1}=0: E_0 = Null(A- 0I_3)=Null(A).Then, we use row operations to find the echelon form of the matrix

A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]

We use backward substitution and we obtain

1.

-8y-4z=0\\y=\frac{-1}{2}z

2.

-4x-4y-4z=0\\-4x-4(\frac{-1}{2}z)-4z=0\\x=\frac{-1}{2}z

Therefore,

E_0=\{(x,y,z): (x,y,z)=(-\frac{1}{2}t,-\frac{1}{2}t,t)\}=gen((-\frac{1}{2},-\frac{1}{2},1))

For \lambda_{2}=-4: E_{-4} = Null(A- (-4)I_3)=Null(A+4I_3).Then, we use row operations to find the echelon form of the matrix

A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]

We use backward substitution and we obtain

1.

-4y-4z=0\\y=-z

Then,

E_{-4}=\{(x,y,z): (x,y,z)=(x,z,z)\}=gen((1,0,0),(0,1,1))

You might be interested in
Find the equation of the inverse.<img src="https://tex.z-dn.net/?f=y%20%3D%20%20%7B2%7D%5E%7Bx%20%2B%205%7D%20%20-%206" id="TexF
Contact [7]

Find the equation of the inverse.

y =  {2}^{x + 5}  - 6

we have

y=\mleft\{2\mright\}^{\mleft\{x+5\mright\}}-6

step 1

Exchange the variables

x for y and y for x

x=\{2\}^{\{y+5\}}-6

step 2

Isolate the variable y

(x+6)=2^{(y+5)}

apply log both sides

\begin{gathered} \log (x+6)=(y+5)\cdot\log (2) \\ y+5=\frac{\log (x+6)}{\log (2)} \\  \\ y=\frac{\log(x+6)}{\log(2)}-5 \end{gathered}

step 3

Let

f^{(-1)}(x)=y

therefore

the inverse function is

f^{(-1)}(x)=\frac{\log(x+6)}{\log(2)}-5

7 0
2 years ago
Find the value of x, rounded to the nearest tenth.
Mashcka [7]
It’d be 12.458 , rounded to the nearest tenth makes it 12.5. Hopefully, I helped.
3 0
4 years ago
Pleasee help me with THISS thankksssd
Taya2010 [7]

Answer:

RP/QR = OP/NO

Step-by-step explanation:

RP corresponds to OP, QR corresponds to NO. So, RP/QR = OP/ON

4 0
2 years ago
I really need help and i need to solve this one that says solve &amp; simplify:3/4×2/3
VARVARA [1.3K]

3/4 2/3

This is a multiplication of fractions

1.- Multiply the numerators and the denominators

3/4 x 2/3 = (3x 2) / (4 x 3)

= 6/12

2.- Simplify

= 3/6

= 1/2

4 0
1 year ago
Factor the equation 45x - 81
alex41 [277]

Answer:

Step-by-step explanation:

45x = 9*5*x

81 = 9*9

GCF = 9

Take 9 out using distributive property { a*b - c*b = b*(a-b)}

45x - 81 = 9*5x - 9*9

            = 9*(5x - 9)

          =9(5x-9)

5 0
3 years ago
Other questions:
  • Which property is (8•9)b=8(9b)
    14·1 answer
  • What is the solution to the equation
    5·1 answer
  • Is this fraction in the simplest form 23/46
    13·1 answer
  • How many inches tall is a 7 foot basketball player
    9·2 answers
  • Help me solve (b) in this quadrilateral
    12·2 answers
  • In the diagram below, points A and B represent two airplanes. How far apart are the airplanes?
    10·1 answer
  • What does it mean for a function to have a root?
    14·2 answers
  • 3.6 - 5.6n - 4n + 8<br> Simplify the expression
    13·2 answers
  • An irrational number is one that simply can not be worked into any equation.
    11·1 answer
  • I need to know, the area of sector AOB is what fractional part of the area of circle O
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!