1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
10

(1 point) The matrix A=⎡⎣⎢−4−4−40−8−4084⎤⎦⎥A=[−400−4−88−4−44] has two real eigenvalues, one of multiplicity 11 and one of multip

licity 22. Find the eigenvalues and a basis of each eigenspace. λ1λ1 = equation editorEquation Editor has multiplicity 11, with a basis of equation editorEquation Editor . λ2λ2 = equation editorEquation Editor has multiplicity 22, with a basis of equation editorEquation Editor .
Mathematics
1 answer:
serious [3.7K]3 years ago
8 0

Answer:

We have the matrix A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]

To find the eigenvalues of A we need find the zeros of the polynomial characteristic p(\lambda)=det(A-\lambda I_3)

Then

p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda

Now, we fin the zeros of p(\lambda).

p(\lambda)=-\lambda^3-8\lambda^2-16\lambda=0\\\lambda(-\lambda^2-8\lambda-16)=0\\\lambda_{1}=0\; o \; \lambda_{2,3}=\frac{8\pm\sqrt{8^2-4(-1)(-16)}}{-2}=\frac{8}{-2}=-4

Then, the eigenvalues of A are \lambda_{1}=0 of multiplicity 1 and \lambda{2}=-4 of multiplicity 2.

Let's find the eigenspaces of A. For \lambda_{1}=0: E_0 = Null(A- 0I_3)=Null(A).Then, we use row operations to find the echelon form of the matrix

A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]

We use backward substitution and we obtain

1.

-8y-4z=0\\y=\frac{-1}{2}z

2.

-4x-4y-4z=0\\-4x-4(\frac{-1}{2}z)-4z=0\\x=\frac{-1}{2}z

Therefore,

E_0=\{(x,y,z): (x,y,z)=(-\frac{1}{2}t,-\frac{1}{2}t,t)\}=gen((-\frac{1}{2},-\frac{1}{2},1))

For \lambda_{2}=-4: E_{-4} = Null(A- (-4)I_3)=Null(A+4I_3).Then, we use row operations to find the echelon form of the matrix

A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]

We use backward substitution and we obtain

1.

-4y-4z=0\\y=-z

Then,

E_{-4}=\{(x,y,z): (x,y,z)=(x,z,z)\}=gen((1,0,0),(0,1,1))

You might be interested in
Could someone Help me please!
Aliun [14]
C = 2 pi r
C = 2 x 3.14 x 5 
C = 31.4 yd

A = pi r^2
A = 3.14 x 5^2
A = 3.14 x 25
A = 78.5 yd^2
4 0
3 years ago
Helppp i’m not sure about this one
Gre4nikov [31]

Answer: l×w divided by 2, then subtract the area from the rectangle.

Step-by-step explanation: 7×12=84/2=42

2×3=6

42-6=36

Hope this helps!

8 0
3 years ago
Please send help! ;)))))))
jeka57 [31]

Answer: x=2

Step-by-step explanation:

subtract 10x from 6x

Add -8x to both sides of equation

Add -4x and 8x

4x-2=6

Add 2 to both sides of equation

4x =6+2

Add 6 and 2

4x=8

Divide each term by 4 and simplify

X=8/4

Divide 8 by 4

X=2

5 0
4 years ago
Determine the expression you can substitute for y in to solve the system below.
FromTheMoon [43]

Answer:

Step-by-step explanation:

given are the two following linear equations:

                       f(x)  =  y  = 1 +  .5x

                       f(x)  =  y  = 11 -  2x

Graph the first equation by finding two data points.  By setting first x and then y equal to zero it is possible to find the y intercept on the vertical axis and the x intercept on the horizontal axis.

           If x = 0, then  f(0)  =  1  + .5(0)  =  1

           If y = 0, then  f(x)  =  0  = 1  +  .5x

                                               -.5x  =  1

                                                    x  =  -2

           The resulting data points are  (0,1)  and  (-2,0)

Graph the second  equation by finding two data points.  By setting first x and then y equal to zero it is possible to find the y intercept on the vertical axis and the x intercept on the horizontal axis.

           If x = 0, then  f(0)  =  11  - 2(0)  =  11

           If y = 0, then  f(x)  =  0  = 11  -  2x

                                               2x  =  11

                                                    x  =  5.5

           The resulting data points are  (0,11)  and  (5.5,0)

At the point of intersection of the two equations x and y have the same values.  From the graph these values can be read as x = 4 and y = 3.

6 0
4 years ago
If an integer from 3 through 14 is chosen at random, what is the
shutvik [7]

Answer:\frac{7}{12}

Step-by-step explanation:

Given

There are integer between 3 and 14 available to be chosen (total 12 integers)

Prime integers among them

3,5,7,11,13 i.e. total of 5 prime integers

So the probability that the number chosen is not Prime

=1-P\text{(no is prime)}

=1-\frac{5}{12}

=\frac{12-5}{12}

=\frac{7}{12}

3 0
4 years ago
Other questions:
  • Six friends go out to lunch and decide to split the bill evenly. The bill comes to $61.56. How much does each person owe?
    11·2 answers
  • 16.437 rounded to the nearest whole number is 16. True or false, explain your answer
    14·1 answer
  • The u.s. department of education reported that for the past seven years 4,033, 5,652, 6,407, 7,201, 8,719, 11,154, and 15,121 pe
    11·1 answer
  • What is one tenth of thirty
    12·2 answers
  • V= 1/2bhw <br> solve for b
    8·1 answer
  • Identify the property used in the first four steps to solve the equation 4(x-7)=2x-6
    11·1 answer
  • Determine the zeros (2 values):<br> y=-2 (x-7)+8
    12·1 answer
  • Graph the following inequality?
    8·1 answer
  • A snowstorm started a midnight. For the first 4 hours, it snowed at an average of one-half inch per hour. The snow then started
    15·1 answer
  • How do I do this number 5 and 6
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!