Step-by-step explanation:
Consider an engineering material of initial length Lo, Area (A), Modulus of elasticity (E) and applied a force P due to which change in the length of the material is δ2 from it’s original length (Lo)
Initial length of the material is Lo. Hence, at time t = 0 when no force applied on the material the length of the material will not change (i.e., at time t=0, δ1 = 0)
Modulus of elasticity of the material:
![E=\frac{P \cdot L_{o}}{A\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BP%20%5Ccdot%20L_%7Bo%7D%7D%7BA%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
Area of the material:
![E=\frac{P \cdot L_{o}}{A\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BP%20%5Ccdot%20L_%7Bo%7D%7D%7BA%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
![A=\frac{P \cdot L_{o}}{E\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7BP%20%5Ccdot%20L_%7Bo%7D%7D%7BE%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
Length of the material:
![E=\frac{P \cdot L_{0}}{A\left[\delta_{2}-\delta_{1}\right]}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7BP%20%5Ccdot%20L_%7B0%7D%7D%7BA%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D)
![L_{0}=\frac{E \cdot A\left[\delta_{2}-\delta_{1}\right]}{P}](https://tex.z-dn.net/?f=L_%7B0%7D%3D%5Cfrac%7BE%20%5Ccdot%20A%5Cleft%5B%5Cdelta_%7B2%7D-%5Cdelta_%7B1%7D%5Cright%5D%7D%7BP%7D)
Answer:
a+b>c
a+c>b
b+c>a
Step-by-step explanation:
1. Learn the triangle inequality theorem.
This theorem simply states that the sum of two sides of a triangle must be greater than the third side.
The unit of measure would change, obviously since you're converting one measure to another. What would not change is the surface area because you're not converting the surface area, you're converting the unit of measure.
Answer:
A. -415m
Step-by-step explanation:
-300 meters is the starting point.
Then, the submarine goes 115m further below the surface, which can be represented as -115.
Add -300 and -115 and you get -415m.
Omg I love this formula hang on Ill comment answer below