Check the picture.
let the length of a side of each of the squares removed be x.
The box formed will have dimensions: 80-2x, 50-2x, x(the height)
So the volume can be expressed as a function of x as follows:
f(x)=(80-2x)(50-2x)x=
![[4000-160x-100x+4 x^{2} ]x=(4 x^{2}-260x+4000)x](https://tex.z-dn.net/?f=%5B4000-160x-100x%2B4%20x%5E%7B2%7D%20%5Dx%3D%284%20x%5E%7B2%7D-260x%2B4000%29x)
so

the solutions of f'(x)=0 gives the inflection points, so the candidates for maxima points,

solving the quadratic equation, either by a calculator, graphing software, or by other algebraic methods as the discriminant formula, we find the solutions
x=10 and x=33.333
plug in f(x) these values to see which greater:

cm cubed

which is negative because (50-66.666)<0
Answer: 18000 cm cubed
Answer: Jack
Step-by-step explanation:
100÷2=50
50÷23=2.1739130435
50÷18=2.7777.....8
Number 3 is 1/6 to role a 1 on the second roll is 1/36= 1/6 X 1/6
to get 2 on the third role is 1/216 so the probability is 1/216
<h3>Given:</h3>
- Hemisphere ×2 or sphere
- Cylinder
<h3>Solution:</h3><h3>Volume of the sphere:</h3>



<h3>Volume of the cylinder:</h3>



<h3>Total volume:</h3>


<u>Hence</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>compound</u><u> </u><u>shape</u><u> </u><u>is</u><u> </u><u>108.91</u><u> </u><u>cubic</u><u> </u><u>meters</u><u>.</u>