Answer:
125/6(In(x-25)) - 5/6(In(x+5))+C
Step-by-step explanation:
∫x2/x1−20x2−125dx
Should be
∫x²/(x²−20x−125)dx
First of all let's factorize the denominator.
x²−20x−125= x²+5x-25x-125
x²−20x−125= x(x+5) -25(x+5)
x²−20x−125= (x-25)(x+5)
∫x²/(x²−20x−125)dx= ∫x²/((x-25)(x+5))dx
x²/(x²−20x−125) =x²/((x-25)(x+5))
x²/((x-25)(x+5))= a/(x-25) +b/(x+5)
x²/= a(x+5) + b(x-25)
Let x=25
625 = a30
a= 625/30
a= 125/6
Let x= -5
25 = -30b
b= 25/-30
b= -5/6
x²/((x-25)(x+5))= 125/6(x-25) -5/6(x+5)
∫x²/(x²−20x−125)dx
=∫125/6(x-25) -∫5/6(x+5) Dx
= 125/6(In(x-25)) - 5/6(In(x+5))+C
.9%. To turn a decimal into a percent, you move the decimal 2 places to the right. So .009 would be .9%
Answer:
3x+12
Step-by-step explanation:
-0.5x*2+4x+12
Multiply 0.5x*2=x
= -x+4x+12
Add similar elements -x+4x+12
= 3x+12
251,782.
Just add 3*16,454 to the original number.
Follow pemdas. Evaluate operations in parentheses first.
2*(-7)+14-4
Then multiply
-14+14-4
Then add and subtract from left to right
-14+14=0
0-4=-4
Final answer: -4