Part A)
Given
Using the point-slope form of the line equation

where
m is the slope of the line
(x₁, y₁) is the point
In our case:
substituting the values m = 6 and the point (x₁, y₁) = (7, 2) in the point-slope form of the line equation


Therefore, the equation in point-slope form for the line having the slope m = 6 and containing the points (7,2) will be:

Part B)
Given
Using the point-slope form of the line equation

where
m is the slope of the line
(x₁, y₁) is the point
In our case:
substituting the values m = -3 and the point (x₁, y₁) = (3, 8) in the point-slope form of the line equation


Therefore, the equation in point-slope form for the line having the slope m = -3 and containing the points (3, 8) will be:
If we divide 55 (the total amount of money he made) by 5 (price to walk one small dog), we get 11. Meaning that the maximum amount of small dogs he could possibly walk and receive that amount of money is 11. However, he only walked 8 dogs. Therefore Ryan would have needed to walk a specific amount of large dogs in order to earn 55 dollars in total.
After doing some process of elimination, I reached this conclusion:
3 small dogs = $15
5 large dogs = $40
The combination of the two would equal $55.
Therefore, the answer would be 3 small dogs.
Answer:
61 3/5
Step-by-step explanation:
we realize that 8 4/5 can be written as [8 + (4/5)]
hence 7 x 8 4/5
= 7 x [8 + (4/5)]
= 7 [8 + (4/5)] (use the distributive property, see attached for reference)
= 7(8) + 7(4/5)
= 56 + 28/5 (convert 28/5 into mixed fraction)
= 56 + 5 3/5
= 61 3/5 (answer)
I: 12x-5y=0
II:(x+12)^2+(y-5)^2=169
with I:
12x=5y
x=(5/12)y
-> substitute x in II:
((5/12)y+12)^2+(y-5)^2=169
(25/144)y^2+10y+144+y^2-10y+25=169
(25/144)y^2+y^2+10y-10y+144+25=169
(25/144)y^2+y^2+144+25=169
(25/144)y^2+y^2+169=169
(25/144)y^2+y^2=0
y^2=0
y=0
insert into I:
12x=0
x=0
-> only intersection is at (0,0) = option B
Yes, adding going up one every time, 5,6,7,8