Answer:
you have simply written 2 matrices in the picture. Tell me which operation do you want to apply on these rectangular matrices
Step-by-step explanation:
Answer:
40,000,000
Step-by-step explanation:
Answer:
Step-by-step explanation:
(-6 , 4) & (-1 , 2)
Slope = 
![= \frac{2-4}{-1-[-6]}\\\\= \frac{-2}{-1+6}\\\\= \frac{-2}{5}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B2-4%7D%7B-1-%5B-6%5D%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B-2%7D%7B-1%2B6%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B-2%7D%7B5%7D)
m = -2/5 & (-6 , 4)
y -y1 = m(x -x1)
![y - 4 = \frac{-2}{5}(x - [-6])\\\\y - 4 = \frac{-2}{5}(x + 6)\\\\y - 4 = \frac{-2}{5}x + 6*\frac{-2}{5}\\\\y = \frac{-2}{5}x -\frac{12}{5}+4\\\\y=\frac{-2}{5}x-\frac{12}{5}+\frac{4*5}{1*5}\\\\y=\frac{-2}{5}x-\frac{12}{5}+\frac{20}{5}\\\\y=\frac{-2}{5}x+\frac{8}{5}](https://tex.z-dn.net/?f=y%20-%204%20%3D%20%5Cfrac%7B-2%7D%7B5%7D%28x%20-%20%5B-6%5D%29%5C%5C%5C%5Cy%20-%204%20%3D%20%5Cfrac%7B-2%7D%7B5%7D%28x%20%2B%206%29%5C%5C%5C%5Cy%20-%204%20%3D%20%5Cfrac%7B-2%7D%7B5%7Dx%20%2B%206%2A%5Cfrac%7B-2%7D%7B5%7D%5C%5C%5C%5Cy%20%3D%20%5Cfrac%7B-2%7D%7B5%7Dx%20-%5Cfrac%7B12%7D%7B5%7D%2B4%5C%5C%5C%5Cy%3D%5Cfrac%7B-2%7D%7B5%7Dx-%5Cfrac%7B12%7D%7B5%7D%2B%5Cfrac%7B4%2A5%7D%7B1%2A5%7D%5C%5C%5C%5Cy%3D%5Cfrac%7B-2%7D%7B5%7Dx-%5Cfrac%7B12%7D%7B5%7D%2B%5Cfrac%7B20%7D%7B5%7D%5C%5C%5C%5Cy%3D%5Cfrac%7B-2%7D%7B5%7Dx%2B%5Cfrac%7B8%7D%7B5%7D)
Answer:
Step-by-step explanation:
y = 2x^2 - 12x +19 Put brackets around the 1st 2 terms. Take 2
y = 2(x^2 - 6x ) + 19 Take 1/2 of the 6 square it and add inside the brackets
y = 2(x^2 - 6 + (6/2)^2) +19 Subtract 2 *9 from the 19. Express 1st 3 terms as ( )^2
y = 2(x- 3)^2 + 19 - 18
y = 2(x - 3)^2 + 1
Answers
y intercept when x = 0 is y = 19
axis of symmetry x = 3
vertex: (3,1)
Graph
graph: red
axis of symmetry: blue
y intercept, vertex: green
Answer:
See solution below
Step-by-step explanation:
According to the diagram shown
m<1 = m<5 = 5=65 degrees (corresponding angle)
m<5 = m<4 - 65 degrees (alternate interior angle)
m<9 = m<8 = 65degrees (corresponding angle)
m<5 = m<8 = 65dgrees (vertically opposite angles)
m<6+m<8 = 180
m<6 + 65 = 180
m<6 = 180 - 65
m<6 = 115degrees
m<2 = m<6 = 115degrees (corresponding angles)
m<6 = m<7 = 115degrees (vertically opposite angles)
m<3 = m<7 = 115degrees(corresponding angle)
)