Every compound or element has a fixed number of molecules
per mole. This is given by the Avogadros number which is about 6.022 x 10^23
molecules per mole. Therefore:
molecules = 2.50 moles * (6.022 x 10^23 molecules / mole)
<span>molecules = 1.5055 x 10^24 molecules of SO2</span>
Answer:
V = 1.434 L
Explanation:
Given data:
Mass of argon = 4.24 g
Temperature = 58.2 °C
Pressure = 1528 torr
Volume = ?
Solution:
58.2 °C = 58.2 + 273 = 331.2 K
1528/760= 2.01 atm
<em>Number of moles:</em>
Number of moles = mass/molar mass
Number of moles = 4.24 g / 39.948 g/mol
Number of moles = 0.106 mol
<em>Volume:</em>
PV = nRT
V = nRT/P
V = 0.106 mol ×0.0821. atm. L. mol⁻¹. K⁻¹ × 331.2K/ 2.01 atm
V = 2.88 atm L/ 2.01 atm
V = 1.434 L
Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.