Find <span>tan<span>(<span><span>5π</span>12</span>)</span></span> and sin ((5pi)/12)
Answer: <span>±<span>(2±<span>√3</span>)</span>and±<span><span>√<span>2+<span>√3</span></span></span>2</span></span>
Explanation:
Call tan ((5pi/12) = t.
Use trig identity: <span><span>tan2</span>a=<span><span>2<span>tana</span></span><span>1−<span><span>tan2</span>a</span></span></span></span>
<span><span>tan<span>(<span><span>10π</span>12</span>)</span></span>=<span>tan<span>(<span><span>5π</span>6</span>)</span></span>=−<span>1<span>√3</span></span>=<span><span>2t</span><span>1−<span>t2</span></span></span></span>
<span><span>t2</span>−2<span>√3</span>t−1=0</span>
<span>D=<span>d2</span>=<span>b2</span>−4ac=12+4=16</span>--> <span>d=±4</span>
<span>t=<span>tan<span>(<span><span>5π</span>12</span>)</span></span>=<span><span>2<span>√3</span></span>2</span>±<span>42</span>=2±<span>√3</span></span>
Call <span><span>sin<span>(<span><span>5π</span>12</span>)</span></span>=<span>siny</span></span>
Use trig identity: <span><span>cos2</span>a=1−2<span><span>sin2</span>a</span></span>
<span><span>cos<span>(<span><span>10π</span>12</span>)</span></span>=<span>cos<span>(<span><span>5π</span>6</span>)</span></span>=<span><span>−<span>√3</span></span>2</span>=1−2<span><span>sin2</span>y</span></span>
<span><span><span>sin2</span>y</span>=<span><span>2+<span>√3</span></span>4</span></span>
<span><span>siny</span>=<span>sin<span>(<span><span>5π</span>12</span>)</span></span>=±<span><span><span>√<span>2+<span>√3</span></span></span>2</span></span></span>
Answer:
T12=a-99=106
Step-by-step explanation:
that's the answer
Answer:
40
Step-by-step explanation:
6% of number = 6/100 × x = 6x/100 = 3x/50
Sum of the number and 6% of itself = 42.4
x + (3x/50) = 42.4
(50x+3x)/50 = 42.4
53x = 42.4 × 50
53x = 2120
x = 2120/53
x = 40
I think the answer is D) 8 over 32 multiplied by 7 over 31
Hopefully that helped! :)
The sunflower is 2.387 meters tall.
The question is asking: which rounding will result in the greatest value?
To see, we need to round 2.387 to meter, tenth meter, and hundredth meter.
Meter - 2 meters
Tenth meter - 2.4 meters
Hundredth meter - 2.39 meters
As you see, rounding to the tenth meter gives the greatest value of 2.4. Therefore, Bahir should use a decimal rounded to the tenth meter.