Answer:
4
Step-by-step explanation:
(4 * 2) - 4 = x
8 - 4 = x
x = 4
Original
(-1,1) (-4,1) (-4, 4)
<span> translation (x, y) to (x + 1, y - 4)
</span>(0,-3) (-3,-3) (-3, 0)
answer
(0, -3), (-3, -3), (-3, 0)
![\large\begin{array}{l}\\\\ \textsf{This question gives us a set}\\\\ \mathsf{S=\{n \in\mathbb{Z}:~1\le n\le 700\}}\\\\ \mathsf{S=\{1,\,2,\,3,\,\ldots,\,699,\,700\}}\\\\\\ \bullet~~\textsf{Set of integers that are divible by 2 (even integers):}\\\\ \mathsf{A=\{n\in \mathbb{Z}:~n=2k,\,k\in\mathbb{Z}\}}\\\\ \mathsf{A=\{\ldots,\,-4,\,-2,\,0,\,2,\,4,\,\ldots\}}\\\\\\ \bullet~~\textsf{Set of integers that are divible by 7:}\\\\ \mathsf{B=\{n\in \mathbb{Z}:~n=7k,\,k\in\mathbb{Z}\}}\\\\ \mathsf{A=\{\ldots,\,-14,\,-7,\,0,\,7,\,14,\,\ldots\}} \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%5C%5C%5C%5C%20%5Ctextsf%7BThis%20question%20gives%20us%20a%20set%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%3D%5C%7Bn%20%5Cin%5Cmathbb%7BZ%7D%3A~1%5Cle%20n%5Cle%20700%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%3D%5C%7B1%2C%5C%2C2%2C%5C%2C3%2C%5C%2C%5Cldots%2C%5C%2C699%2C%5C%2C700%5C%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cbullet~~%5Ctextsf%7BSet%20of%20integers%20that%20are%20divible%20by%202%20%28even%20integers%29%3A%7D%5C%5C%5C%5C%20%5Cmathsf%7BA%3D%5C%7Bn%5Cin%20%5Cmathbb%7BZ%7D%3A~n%3D2k%2C%5C%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BA%3D%5C%7B%5Cldots%2C%5C%2C-4%2C%5C%2C-2%2C%5C%2C0%2C%5C%2C2%2C%5C%2C4%2C%5C%2C%5Cldots%5C%7D%7D%5C%5C%5C%5C%5C%5C%20%5Cbullet~~%5Ctextsf%7BSet%20of%20integers%20that%20are%20divible%20by%207%3A%7D%5C%5C%5C%5C%20%5Cmathsf%7BB%3D%5C%7Bn%5Cin%20%5Cmathbb%7BZ%7D%3A~n%3D7k%2C%5C%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BA%3D%5C%7B%5Cldots%2C%5C%2C-14%2C%5C%2C-7%2C%5C%2C0%2C%5C%2C7%2C%5C%2C14%2C%5C%2C%5Cldots%5C%7D%7D%20%5Cend%7Barray%7D)
___________
![\large\begin{array}{l}\\\\ \textsf{We want to know how many elements there are in the}\\\textsf{following set:}\\\\ \mathsf{S\cap (A\cup B)=(S\cap A)\cup(S\cap B)\qquad(i)} \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%5C%5C%5C%5C%20%5Ctextsf%7BWe%20want%20to%20know%20how%20many%20elements%20there%20are%20in%20the%7D%5C%5C%5Ctextsf%7Bfollowing%20set%3A%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%5Ccap%20%28A%5Ccup%20B%29%3D%28S%5Ccap%20A%29%5Ccup%28S%5Ccap%20B%29%5Cqquad%28i%29%7D%20%5Cend%7Barray%7D)
____________
![\large\begin{array}{l}\\\\ \bullet~~\mathsf{S\cap A=\{n\in\mathbb{N}:~n=2k~~and~~1\le n\le 700,\,k\in\mathbb{Z}\}}\\\\ \mathsf{S\cap A=\{2,\,4,\,6,\,\ldots,\,698,\,700\}}\\\\ \mathsf{S\cap A=\{1\cdot 2,\,2\cdot 2,\,3\cdot 2,\,\ldots,\,349\cdot 2,\,350\cdot 2\}}\\\\\\ \textsf{So, there are 350 elements in }\mathsf{S\cap A:}\\\\ \mathsf{\#(S\cap A)=350.} \\\\\\ \bullet~~\mathsf{S\cap B=\{n\in\mathbb{N}:~n=7k~~and~~1\le n\le 700,\,k\in\mathbb{Z}\}}\\\\ \mathsf{S\cap B=\{7,\,14,\,21,\,\ldots,\,693,\,700\}}\\\\ \mathsf{S\cap B=\{1\cdot 7,\,2\cdot 7,\,3\cdot 7,\,\ldots,\,99\cdot 7,\,100\cdot 7\}} \\\\\\ \textsf{So, there are 100 elements in }\mathsf{S\cap B:}\\\\ \mathsf{\#(S\cap B)=100.} \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%5C%5C%5C%5C%20%5Cbullet~~%5Cmathsf%7BS%5Ccap%20A%3D%5C%7Bn%5Cin%5Cmathbb%7BN%7D%3A~n%3D2k~~and~~1%5Cle%20n%5Cle%20700%2C%5C%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%5Ccap%20A%3D%5C%7B2%2C%5C%2C4%2C%5C%2C6%2C%5C%2C%5Cldots%2C%5C%2C698%2C%5C%2C700%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%5Ccap%20A%3D%5C%7B1%5Ccdot%202%2C%5C%2C2%5Ccdot%202%2C%5C%2C3%5Ccdot%202%2C%5C%2C%5Cldots%2C%5C%2C349%5Ccdot%202%2C%5C%2C350%5Ccdot%202%5C%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctextsf%7BSo%2C%20there%20are%20350%20elements%20in%20%7D%5Cmathsf%7BS%5Ccap%20A%3A%7D%5C%5C%5C%5C%20%5Cmathsf%7B%5C%23%28S%5Ccap%20A%29%3D350.%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbullet~~%5Cmathsf%7BS%5Ccap%20B%3D%5C%7Bn%5Cin%5Cmathbb%7BN%7D%3A~n%3D7k~~and~~1%5Cle%20n%5Cle%20700%2C%5C%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%5Ccap%20B%3D%5C%7B7%2C%5C%2C14%2C%5C%2C21%2C%5C%2C%5Cldots%2C%5C%2C693%2C%5C%2C700%5C%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7BS%5Ccap%20B%3D%5C%7B1%5Ccdot%207%2C%5C%2C2%5Ccdot%207%2C%5C%2C3%5Ccdot%207%2C%5C%2C%5Cldots%2C%5C%2C99%5Ccdot%207%2C%5C%2C100%5Ccdot%207%5C%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextsf%7BSo%2C%20there%20are%20100%20elements%20in%20%7D%5Cmathsf%7BS%5Ccap%20B%3A%7D%5C%5C%5C%5C%20%5Cmathsf%7B%5C%23%28S%5Ccap%20B%29%3D100.%7D%20%5Cend%7Barray%7D)
____________
If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105863![\large\begin{array}{l}\\\\ \textsf{Any doubts? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%5C%5C%5C%5C%20%5Ctextsf%7BAny%20doubts%3F%20Please%2C%20comment%20below.%7D%5C%5C%5C%5C%5C%5C%20%5Ctextsf%7BBest%20wishes%21%20%3A-%29%7D%20%5Cend%7Barray%7D)
Tags: <em>set theory divibilility divisible integers union intersection</em>
Answer:
No
Step-by-step explanation:
Look at the surface area of the box formular : S = 2lw + 2lh + 2wh
When l : length. w: with and h: hight
As we often considered strange, you can always multiply a whole number by a whole number and always get a whole number, and there is no decimal number about the 3 dementions like the boxes you have been describing so far. So It is impossible.
Answer:
-1
Step-by-step explanation:
The required relation is ...
7n = n^2 -8
0 = n^2 -7n -8 . . . . put in standard form
0 = (n -8)(n +1) . . . . factor
Solutions are n=8 and n=-1.
The negative solution is -1.