Answer:
Step-by-step explanation:
1) since the sixth term is 3 and the fifth term 24, the common ratio would be 3/24 = 1/8
The formula for finding the nth term of a geometric sequence is
Tn = ar^(n - 1)
If t6 = 3,r = 1/8, then
3 = a × 1/8^(6 - 1) = a × (1/8)^5
a = 3/(0.125)^5 = 98304
The first term is 98304.
Second term is 98304 × 1/8 = 12288
Third term is 12288 × 1/8 = 1536
Third term is 1536 × 1/8 = 192
2) t1 = 4
t2 = - 3t(2- 1) = - 3t1 = - 3 × 4 = - 12
t3 = - 3t(3- 1) = - 3t2 = - 3 × - 12 = 36
t4 = - 3t(4- 1) = - 3t3 = - 3 × 36 = - 108
3) let the numbers be t2,t3 and t4
The sequence becomes
1/2, t2,t3, t4,8
The formula for finding the nth term of a geometric sequence is
Tn = ar^(n - 1)
8 = 1/2 × r^(5 - 1)
8 = 1/2 × r^4
16 = r^4
2^4 = r^4
r = 2
t2 = 1/2 × 2 = 1
t3 = 1 × 2 = 2
t4 = 2 × 2 = 4
There were 5 of the 15 in the simulation that used a coupon. To find the probability you just divide 5 by 15
P(=>4) = 5/15 = 1/3 - probability of 4 or more
In algebraic terms this is:

The integer is 2.
Answer:
8
Step-by-step explanation:
Divide 30 by 3.75 to get 8.
Hope that this helps!
Let <span>simplify the equations

and

:
</span>
<span>1)
</span>
<span>and
</span>
<span>2)

.
</span>
<span>Equate the coefficients:
</span><span>
</span><span>

.</span>
Then

and mnp=24.
<span />