<span>A parallelogram is a 4-sided shape where opposites sides are parallel. A rectangle is a special case of a parallelogram. All rectangles are parallelograms.
But a rectangle is a shape where opposites sides are parallel *and* all the corners are 90 degree angles. So you can't say that all parallelograms would be rectangles. Some parallelograms would be rectangles, but not all.
Rectangles are a subset of the shapes called parallelograms. But parallelograms are *not* a subset of the shapes called rectangles.
It's similar to saying all cars are vehicles. But you can't say that all vehicles are cars. </span>
All rectangles are parallelograms. Hope this helps.
Answer:
Please check the explanation.
Step-by-step explanation:
Given the function

We know that the domain of the function is the set of input or arguments for which the function is real and defined.
In other words,
- Domain refers to all the possible sets of input values on the x-axis.
Now, determine non-negative values for radicals so that we can sort out the domain values for which the function can be defined.

as x³ - 16x ≥ 0

Thus, identifying the intervals:

Thus,
The domain of the function f(x) is:
![x\left(x+4\right)\left(x-4\right)\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-4\le \:x\le \:0\quad \mathrm{or}\quad \:x\ge \:4\:\\ \:\mathrm{Interval\:Notation:}&\:\left[-4,\:0\right]\cup \:[4,\:\infty \:)\end{bmatrix}](https://tex.z-dn.net/?f=x%5Cleft%28x%2B4%5Cright%29%5Cleft%28x-4%5Cright%29%5Cge%20%5C%3A0%5Cquad%20%3A%5Cquad%20%5Cbegin%7Bbmatrix%7D%5Cmathrm%7BSolution%3A%7D%5C%3A%26%5C%3A-4%5Cle%20%5C%3Ax%5Cle%20%5C%3A0%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Ax%5Cge%20%5C%3A4%5C%3A%5C%5C%20%5C%3A%5Cmathrm%7BInterval%5C%3ANotation%3A%7D%26%5C%3A%5Cleft%5B-4%2C%5C%3A0%5Cright%5D%5Ccup%20%5C%3A%5B4%2C%5C%3A%5Cinfty%20%5C%3A%29%5Cend%7Bbmatrix%7D)
And the Least Value of the domain is -4.
By converting into parametric equations,
<span><span>x(θ)=r(θ)cosθ=cos2θ<span>cosθ
</span></span><span>y(θ)=r(θ)sinθ=cos2θsinθ</span></span>
By Product Rule,
<span>x'(θ)=−sin2θcosθ−cos2θsinθ</span>
<span>x'<span>(π/2)</span>=−<span>sin(π)</span><span>cos<span>(π/2)</span></span>−<span>cos(π)</span><span>sin<span>(π/2)</span></span>=1</span>
<span>y'(θ)=−sin2θsinθ+cos2θcosθ</span>
<span>y'<span>(π/2)</span>=−<span>sin(π)</span><span>sin<span>(π/2)</span></span>+<span>cos(π)</span><span>cos<span>(π/2)</span></span>=0</span>
So, the slope m of the curve can be found by
<span>m=<span>dy/dx</span><span>∣<span>θ=<span>π2
</span></span></span>= <span><span>y'<span>(π/2)/</span></span><span>x'<span>(π/2)
</span></span></span></span>=0/1
=0
I hope my answer has come to your help. Thank you for posting your question here in Brainly.