Answer:
x = √(a(a+b))
Step-by-step explanation:
We can also assume a > 0 and b > 0 without loss of generality. (If a and a+b have opposite signs, the maximum angle is 180° at x=0.)
We choose to define tan(α) = -(b+a)/x and tan(β) = -a/x. Then the tangent of ∠APB is ...
tan(∠APB) = (tan(α) -tan(β))/(1 +tan(α)tan(β))
= ((-(a+b)/x) -(-a/x))/(1 +(-(a+b)/x)(-a/x))
= (-bx)/(x^2 +ab +a^2)
This will be maximized when its derivative is zero.
d(tan(∠APB))/dx = ((x^2 +ab +a^2)(-b) -(-bx)(2x))/(x^2 +ab +a^2)^2
The derivative will be zero when the numerator is zero, so we want ...
bx^2 -ab^2 -a^2b = 0
b(x^2 -(a(a+b))) = 0
This has solutions ...
b = 0
x = √(a(a+b))
The former case is the degenerate case where ∠APB is 0, and the value of x can be anything.
The latter case is the one of interest:
x = √(a(a+b)) . . . . . . the geometric mean of A and B rotated to the x-axis.
_____
<em>Comment on the result</em>
This result is validated by experiments using a geometry program. The location of P can be constructed in a few simple steps: Construct a semicircle through the origin and B. Find the intersection point of that semicircle with a line through A parallel to the x-axis. The distance from the origin to that intersection point is x.
If polygons are similar ratio if sides will be same

Never due to if they have different slopes they can only have 1 solution.
Answer:
the country will lack that particular resource and the country will lack the necessary products from that resource.
Answer:
B.25%; 70%; 5%
Step-by-step explanation:
Other options have % very close to eachother, pie chart may not reflect the difference