1. The range of a function is the set of all values that f can produce for all the x-es in the domain.
2. If we are given the graph, in order to find the range, we project the graph into the y axis. Informally, we draw the "shadow" of the graph into the y axis as in the FIGURE atached.
3. The range is <span>D || {y | −5 ≤ y ≤ −1}</span>
To answer this, we let x some factor that would agree or make the ratio given true. We calculate as follows:
<span>2:3:4
2x:3x:4x
2x = 12
x = 6
Therefore, the length of the longest side would be 4x = 4(6) = 24 cm, third option.</span>
Answer:
(-6,-4)
Step-by-step explanation:
The first endpoint of the line is (-6,8), we can call
x_1 = -6
and
y_1 = 8
Let the last endpoint have coordinates (x_2,y_2)
Also, the midpoint formula is:
(x_1+x_2)/2 , (y_1+y_2)/2
Now, plugging these values is the formula, we get:
(-6+x_2)/2 = -6
-6+x_2=-12
x_2=-12+6 = -6
x_2 = -6
Also
(8+y_2)/2=2
8+y_2=4
y_2=4-8=-4
y_2 = -4
The coordinates of the other endpoint is (-6,-4)
Answer:
Subtraction property of inequality
Step-by-step explanation:
Step 1: Definition of Subtraction property
Subtraction property of equality refers to balancing an equation by using the same mathematical operation (minus) on both sides.
Step 2: Relate the definition above with the given question.
It can be seen from the statements in the question that 3 was subtracted from both sides of the initial equation to get:

El área de un cuadrado es igual a 8 veces la medida de su lado. ¿Cuánto mide por lado el cuadrado ?
El Area de un Cuadrado es : A = L²
L² = 8 x L -------------> L² / L = 8 ----------> L = 8
Cada lado mide 8 unidades.
2) El triple del área de un cuadrado menos seis veces la medida de su lado es igual a cero ¿Cuánto mide por lado el cuadrado?
El Area de un Cuadrado es : A = L²
(3 x L²) - 6 L = 0
Factorizando : 3L ( L - 2 ) = 0 --------> L = 0 ; L = 2
Cada lado mide 2 unidades.