Answer:
61,940
Step-by-step explanation:
For a recursive sequence of reasonable length, it is convenient to use a suitable calculator for figuring the terms of it. Since each term not only depends on previous terms, but also depends on the term number, it works well to use a spreadsheet for doing the calculations. The formula is easily entered and replicated for as many terms as may be required.
__
The result of executing the given algorithm is shown in the attachment. (We have assumed that g_1 means g[-1], and that g_2 means g[-2]. These are the starting values required to compute g[0] when k=0.
That calculation looks like ...
g[0] = (0 -1)×g[-1] +g[-2} = (-1)(9) +5 = -4
The attachment shows the last term (for k=8) is 61,940.
Answer:
RT=6.5
PV=7.3
Step-by-step explanation:
Answer:
Male 2:9
Female 1:7
Step-by-step explanation:
Answer:
Yes, we reject the auto maker's claim.
Step-by-step explanation:
H0 : μ ≥ 20
H1 : μ < 20
Sample mean, xbar = 18 ;
Sample size, n = 36
Standard deviation, s = 5
At α = 0.01
The test statistic :
(xbar - μ) ÷ s /sqrt(n)
(18 - 20) ÷ 5/sqrt(36)
-2 /0.8333333
= - 2.4
Pvalue from test statistic : Pvalue = 0.00819
Pvalue < α
0.00819 < 0.01
Hence, we reject the Null
7cos(x) + 1 = 6sec(x)
7cos(x) + 1 = 6/cos(x)
7cos^(x) + cos(x) = 6
7cos^(x) + cos(x) - 6 = 0
[7cos(x) - 6][cos(x) + 1] = 0
cos(x) = 6/7 , x = arccos(6/7) and
cos(x) = -1, x = 180