Answer is C bc of the fact of diameter
Hello,
Here is your answer:
The proper answer to this question is option A "determining point of diminishing returns"! That because the government uses that to get taxes back!
Your answer is A!
If you need any ore help feel free to ask me!
Hope this helps!
Answer:
c. Proteins and lipids are made on the ER membrane and put in vesicles.
a. Vesicles containing proteins and lipids fuse with the Golgi bodies.
d. The Golgi bodies tag the molecules to signal their ultimate delivery.
b. Vesicles pinched off from the cristernae carry the molecule to its location.
Explanation:
Proteins are made by the ribosome machinery of the rough endoplasmic reticulum. The proteins made need to be packaged before they are sent outside the cell to their location. If the proteins are not packaged and tagged, then they will be degraded by different enzymes present in the cell. So, the packaging of the proteins is done by the Golgi-complex. After packaging is done and tags are added to the proteins, the proteins move to the outside of the cell in vesicles.
Answer:
You'll have to post a picture of the problem in order for me to be able to answer the question
Explanation:
Answer:
The options
A)Damage to cellular mitochondria
B)Increased ATP levels
C)Activation of the p53 protein
D)Apoptosis
The CORRECT ANSWER IS D
D)Apoptosis
Explanation:
The extrinsic pathway of apoptosis includes extracellular signaling proteins which adhere to cell surface molecules known aa death receptors which in turn activates apoptosis.
The aftermath activates endonucleases prompting division of DNA and ultimately cell death.
Apart from the TNF and Fas ligand, primary signaling molecules also promotes the extrinsic pathway, examples of such are the TNF-related apoptosis-inducing ligand (TRAIL); the cytokineinterleukin-1 (IL-1); and lipopolysaccharide (LPS), the endotoxin located in the outer cell membrane of gram-negative bacteria while the activation of the p53 protein, and decreased ATP levels in the intrinsic pathway results in DNA damage.