Answer:
See below.
Step-by-step explanation:
I will assume that 3n is the last term.
First let n = k, then:
Sum ( k terms) = 7k^2 + 3k
Now, the sum of k+1 terms = 7k^2 + 3k + (k+1) th term
= 7k^2 + 3k + 14(k + 1) - 4
= 7k^2 + 17k + 10
Now 7(k + 1)^2 = 7k^2 +14 k + 7 so
7k^2 + 17k + 10
= 7(k + 1)^2 + 3k + 3
= 7(k + 1)^2 + 3(k + 1)
Which is the formula for the Sum of k terms with the k replaced by k + 1.
Therefore we can say if the sum formula is true for k terms then it is also true for (k + 1) terms.
But the formula is true for 1 term because 7(1)^2 + 3(1) = 10 .
So it must also be true for all subsequent( 2,3 etc) terms.
This completes the proof.
You can find the answer with the steps in the app(cymath)
The intensity level is hard and for the first part, it’s 168. and something. Sorry that’s all I figured out I’m not too smart :/
Answer:
11,199,081
Step-by-step explanation:
Hope this helped, have a great day! ;D