Complete question :
Suppose that of the 300 seniors who graduated from Schwarzchild High School last spring, some have jobs, some are attending college, and some are doing both. The following Venn diagram shows the number of graduates in each category. What is the probability that a randomly selected graduate has a job if he or she is attending college? Give your answer as a decimal precise to two decimal places.
What is the probability that a randomly selected graduate attends college if he or she has a job? Give your answer as a decimal precise to two decimal places.
Answer:
0.56 ; 0.60
Step-by-step explanation:
From The attached Venn diagram :
C = attend college ; J = has a job
P(C) = (35+45)/300 = 80/300 = 8/30
P(J) = (30+45)/300 = 75/300 = 0.25
P(C n J) = 45 /300 = 0.15
1.)
P(J | C) = P(C n J) / P(C)
P(J | C) = 0.15 / (8/30)
P(J | C) = 0.5625 = 0.56
2.)
P(C | J) = P(C n J) / P(J)
P(C | J) = 0.15 / (0.25)
P(C | J) = 0.6 = 0.60
Answer:
B SSA
Step-by-step explanation:
Geometric proofs can be used to show that the two triangles are congruent using ASA, SAS and SSS.
However, there is no such thing as SSA in geometry because an angle and two sides can not show congruence of triangles. This is so because the angle is not an included angle.
Answer:
Step-by-step explanation:
light blue, 4,6,8
<u>EXPLANATION</u><u>:</u>
In ∆ ABC , ∠ABC = 40°
∠ACD is an exterior angle formed by extending BC to D
We know that
The exterior angle of a triangle formed by extending one side is equal to the sum of the opposite interior angles.
∠ACD = ∠CAB + ∠ABC
⇛50° = x° + 40°
⇛x° = 50°-40°
<h3>⇛x° = 10°</h3>
and
In ∆ ACD , AC = CD
⇛ ∠CDA = ∠CAD
Since the angles opposite to equal sides are equal.
Let ∠CDA = ∠CAD = A°
We know that
The sum of all angles in a triangle is 180°
In ∆ ACD,
∠CDA +∠CAD + ∠ACD = 180°
A°+A°+50° = 180°
⇛2A°+50° = 180°
⇛2A° = 180°-50°
⇛2A° = 130°
⇛A° = 130°/2
⇛A° = 65°
now,
∠CDA = ∠CAD = 65°
∠BAC + ∠CAD+y = 180°
Since angles in the same line
10°+65°+y = 180°
⇛75°+y =180°
⇛y = 180°-75°
<h3>⇛y = 105°</h3>
<u>Answer</u><u>:</u> Hence, the value of “x” & “y” will be 10° and 105° respectively.