1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
13

How to solve 67.8 × 0.45

Mathematics
1 answer:
SSSSS [86.1K]3 years ago
5 0

A method is to normally multiply 67.8 and 45, and then move the decimal place according to the two numbers like this: in 67.8 the decimal is to the left once, and in 0.45 the decimal is to the left 2 times, so in the answer it will be to the left 3 times. Solve, and the answer is 30.51.

You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Can someone help with this question idk how to do it
Ainat [17]

Answer:

Both are located on railroad lines

the question asks for similarities between Denver and Cheyenne. If you look at the map, both have the dotted line along them. In the key, the dotted lines represent railroads.

3 0
3 years ago
Please help 20 points
Brilliant_brown [7]

Answer:

no, nonononono, i just answered this question O_v_O

6 0
3 years ago
Read 2 more answers
What is 15 divided by 1634
Mazyrski [523]

Answer:108.93 repeating

Step-by-step explanation:

1634/15

3 0
3 years ago
Read 2 more answers
How do i solve the equation 5n+4=-26  
ozzi
You do 

-26
-4
---
-30

5n=-30 so...

-30/5=-6

Therefore 
n=-6
3 0
3 years ago
Read 2 more answers
Other questions:
  • Alice purchased 4 1⁄2 kilograms of olive oil for $27. What is the price per kilogram?
    9·2 answers
  • How do I solve this 8(c-9)=6(2c-12)-4c
    14·1 answer
  • Does anyone know how to turn these fractions into percents??? please help!!!
    12·1 answer
  • Which expression is equivalent to 81-16x^2
    11·1 answer
  • Help is the answer of <img src="https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20-%5Cfrac%7B4%7D%7B5%7D" id="TexFormula1" title="
    11·1 answer
  • HELP will mark brainiest answer if gotten right
    13·2 answers
  • I need help with this ​
    12·1 answer
  • An album receives an award when it sells 100,000,000 copies. An album has sold 7,680,000 copies. How many more copies does it ne
    15·1 answer
  • Richard and Teo have a combined
    13·1 answer
  • Question 6 (Yes/No Worth 1 points)<br> (02.01 LC)<br> Is the following relation a function?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!