1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
2 years ago
13

If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form

Mathematics
1 answer:
algol132 years ago
6 0

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
You might be interested in
A line has a slope of -1/4 and passes through point (-5/4,1) what is the equation of the line?
solniwko [45]

Answer:

The correct answer is B. y = -1/4x + 11/16

Step-by-step explanation:

In order to find this, we must plug in the slope and the point into point-slope form. We can then solve for slope intercept form.

y - y1 = m(x - x1)

y - 1 = -1/4(x - -5/4)

y - 1 = -1/4(x + 5/4)

y - 1 = -1/4x - 5/16

y = -1/4x + 11/16

7 0
3 years ago
Plz explain and help me
horsena [70]
Volume=length x width x height

3 x 2=6    6 x 5=30

a is 30

b is 2 x 3 x 1 or 6 x 1

V=b x h or L x w x h
3 0
3 years ago
Read 2 more answers
Graph the line. y=-4x+7
MArishka [77]

Step-by-step explanation:

Straight line from -1,11 to 1,3 and then extend the line

4 0
2 years ago
Read 2 more answers
Can someone help me with this math homework please!
dexar [7]

1.f(0) = 6

2.f(4)=5

3.f(-3)=-5

4. V(r) represent volume of basketball when radius is r

5.f(9) =5

3 0
3 years ago
Read 2 more answers
Question:
mash [69]

The least common denominator is the Least Common Multiple (LCM) of the divisors 3 and 4. Since these numbers have no common factors, their LCM is

... 3·4 = 12

The least common denominator of your fractions is 12.

... 1/3 = (1/3)·(4/4) = 4/12

... 3/4 = (3/4)·(3/3) = 9/12

3 0
3 years ago
Other questions:
  • What is a? And what’s number 6
    14·1 answer
  • P = $1000, t = 2 years, r = 0.08. A = 1000(1+0.08(2)) = 1000(1.16) = 1160
    13·1 answer
  • Convert the following equation into simultaneous equation and solve
    8·1 answer
  • What is the value of x in the solution to this system of equations <br> 3x=2y+14<br> y=-6x+18
    12·1 answer
  • How is 100,000 model is compare to 10,000
    15·1 answer
  • Prime numbers have
    5·1 answer
  • FIND THE VALUE OF X.<br> GIVEN ABCDEF~JKLMNP.
    8·1 answer
  • A soccer ball is kicked from the ground at an upwards velocity of 90 feet per second. The equation h(t)=-16t^(2)+90t gives the h
    5·1 answer
  • Hey I'm Chloe Lol, Can You Help Me Thank you :)
    7·2 answers
  • What is the slope of y =4x -3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!