1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
13

If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form

Mathematics
1 answer:
algol133 years ago
6 0

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
You might be interested in
In winter, the price of apples suddenly went up by$0.75 per pound. Sam bought 3 pounds of apples at the new price for a total of
White raven [17]

From the information given, the original price per pound was increased by $ 0.75
Let the original price be x, so the new price is x + 0.75

Sam bought 3 pounds of apples at new price and it cost him 5.88

so we form an equation:

3 (x + 0.75) = 5.88

3x + 2.25 = 5.88

3x = 5.88 - 2.25

3x = 3.63

x = 3.63 / 3

x = 1.21

Therefore the original price per pound is 1.21 dollars


4 0
3 years ago
Read 2 more answers
Michael Bought 0.44 pounds of sliced turkey. What is the value of the digit in the hundredths place?
Art [367]
.04 hundredths. I cant believe i am still doing this in middle school.<span />
3 0
3 years ago
Read 2 more answers
What is the value of x when 9x=45
kkurt [141]

Answer:

5

Step-by-step explanation:

45 divided by 9= 5

6 0
3 years ago
Read 2 more answers
What is 2,912 rounded to the nearest thousand
FrozenT [24]

Answer:

3,000

Step-by-step explanation:

Find the number in the thousand place  2  and look one place to the right for the rounding digit  9 . Round up if this number is greater than or equal to  5  and round down if it is less than  5 .

5 0
4 years ago
Read 2 more answers
What is the volume of the composite figure? Explain your work. A complete answer should include how you broke up the figure, whi
Sphinxa [80]

Answer:

15,000\:\mathrm{mm^3}

Step-by-step explanation:

The composite figure consists of a square prism and a trapezoidal prism. By adding the volume of each, we obtain the volume of the composite figure.

The volume of the square prism is given by V=s^2\cdot h, where s is the base length and h is the height. Substituting given values, we have: V=14^2\cdot 30=196\cdot 30=5,880\:\mathrm{mm^3}

The volume of a trapezoidal prism is given by V=\frac{b_1+b_2}{2}\cdot l\cdot h, where b_1 and b_2 are bases of the trapezoid, l is the length of the height of the trapezoid and h is the height. This may look very confusing, but to break it down, we're finding the area of the trapezoid (base) and multiplying it by the height. The area of a trapezoid is given by the average of the bases (\frac{b_1+b_2}{2}) multiplied by the trapezoid's height (l).

Substituting given values, we get:

V=\frac{14+24}{2}\cdot (30-14)\cdot 30,\\V=19\cdot 16\cdot 30=9,120\:\mathrm{mm^3}}

Therefore, the total volume of the composite figure is 5,880+9,120=\boxed{15,000\:\mathrm{mm^3}} (ah, perfect)

Alternatively, we can break the figure into a larger square prism and a triangular prism to verify the same answer:

V=30^2\cdot 14+\frac{1}{2}\cdot10\cdot 16\cdot 30=\boxed{15,000\:\mathrm{mm^3}}\checkmark

8 0
3 years ago
Other questions:
  • Help please need it fast
    15·2 answers
  • Through:(5,0), parallel to y=4/5x-3
    11·2 answers
  • The graph of the function f(x)=-(x+3)(x-1) is shown below.Which is true about the domain and range of the function
    8·2 answers
  • Which expressions are equivalent to 4b ?
    11·2 answers
  • Steve picks 55 pounds of pears. He packs an equal amount of pears into 6bags. He then has4 pounds of pears left. What is the wei
    13·2 answers
  • Use the histograms to answer the question.
    13·1 answer
  • Look at the figure. Find TW
    12·1 answer
  • In the week that ended on January 4, there were 24 cases of flu reported in a city’s hospital. In the 5 weeks that followed, the
    13·1 answer
  • 3x-5+6y-9+10x
    9·2 answers
  • 1,092 inches to yards
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!