Answer:
2
Explanation:
The total number of atoms in silver sulfate Ag2SO4 is 2
When 100 photons of light pass through a sample and 64 photons are detected after the passage of light, the number of photons transmitted through the sample is 64.
This is based on the methods of calculating the absorbance of light, which is depicted as the higher the amount of light transmission, the lower the amount of light absorbed.
Thus, when 64 photons of light in 100 photons are detected, 64 photons are transmitted, and therefore, the number of photons absorbed is 36.
Hence, hypothetically, if 100 photons of light are transmitted, 0 photons of light will be absorbed.
Therefore, in this case, it is concluded that the correct answer is 64 photos.
Learn more here: brainly.com/question/20678715
Answer: The energy (heat) required to convert 52.0 g of ice at –10.0°C to steam at 100°C is 157.8 kJ
Explanation:
Using this formular, q = [mCpΔT] and = [nΔHfusion]
The energy that is needed in the different physical changes is thus:
The heat needed to raise the ice temperature from -10.0°C to 0°C is given as as:
q = [mCpΔT]
q = 52.0 x 2.09 x 10
q = 1.09 kJ
While from 0°C to 100°C is calculated as:
q = [mCpΔT]
q = 52.0 x 4.18 x 100
q = 21.74 kJ
And for fusion at 0°C is called Heat of fusion and would be given as:
q = n ΔHfusion
q = 52.0 / 18.02 x 6.02
q = 17.38 kJ
And that required for vaporization at 100°C is called Heat of vaporization and it's given as:
q = n ΔHvaporization
q = 52.0 / 18.02 x 40.7
q = 117.45 kJ
Add up all the energy gives 157.8 kJ
The type of bonds present in the compound. and the type of structure it has and the elements that are presents and the number of moles of each element in one mole of the compound.
The complete balanced chemical equation for this is:
<span>3KOH + H3PO4
--> K3PO4 + 3H2O</span>
First we calculate the number of moles of H3PO4:
moles H3PO4 = 0.650 moles / L * 0.024 L = 0.0156 mol
From stoichiometry, 3 moles of KOH is required for every
mole of H3PO4, therefore:
moles KOH = 0.0156 mol H3PO4 * (3 moles KOH / 1 mole
H3PO4) = 0.0468 mol
Calculating for volume given molarity of 0.350 M KOH:
Volume = 0.0468 mol / (0.350 mol / L) = 0.1337 L = 133.7
mL
Answer:
<span>133.7 mL KOH</span>