Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
Answer:
1. Molecular equation
BaCl2(aq) + 2AgNO3(aq) –> 2AgCl(s) + Ba(NO3)2 (aq)
2. Complete Ionic equation
Ba²⁺(aq) + 2Cl¯(aq) + 2Ag⁺(aq) + 2NO3¯ (aq) —> 2AgCl(s) + Ba²⁺(aq) + 2NO3¯(aq)
3. Net ionic equation
Cl¯(aq) + Ag⁺(aq) —> AgCl(s)
Explanation:
Answer:
Option B is correct.
4
Explanation:
We know that an atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example, if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
In given problem we are given with 2 neutrons of helium. We know that the atomic number of He is 2. Thus Mass number of He is,
Number of neutrons + number of proton
2 + 2 = 4
Thus, option B is correct.
The chemical equation given is:
<span>2x(g) ⇄ y(g)+z(s)</span>
Answer: the higher the amount of x(g) the more the forward reacton will occur and the higher the amounts of products y(g) and z(s) will be obtained at equilibrium.
Justification:
As Le Chatellier's priciple states, any change in a system in equilibrium will be compensated to restablish the equilibrium.
The higher the amount, and so the concentration, of X(g), the more the forward reaction will proceed to deal witht he high concentration of X(g), leading to an increase on the concentration of the products y(g) and z (s).
The awnser is D or the 4th one