Missing question: what is the density of 53.4 wt% aqueous NaOH if 16.7 mL of the solution diluted to 2.00L gives 0.169 M NaOH?
Answer is: density is 1.52 g/mL.
c₁(NaOH) = ?; molarity of concentrated sodium hydroxide.
V₁(NaOH) = 16.7 mL; volume of concentrated sodium hydroxide.
c₂(NaOH) = 0.169 M; molarity of diluted sodium hydroxide.
V₂(NaOH) = 2.00 L · 1000 mL/L = 2000 mL; volume of diluted sodium hydroxide.
Use equation: c₁V₁ = c₂V₂.
c₁ = c₂V₂ / V₁.
c₁ = 0.169 M · 2000 mL / 16.7 mL.
c₁(NaOH) = 20.23 M.
m(NaOH) = 20.23 mol · 40 g/ml.
m(NaOH) = 809.53 g.
The mass fraction is the ratio of one substance (in this example sodium hydroxide) with mass to the mass of the total mixture (solution).
Make proportion: m(NaOH) : m(solution) = 53.4 g : 100 g.
m(solution) = 1516 g in one liter of solution.
d(solution) = 1516 g/L = 1.52 g/mL.
Answer:
chemical reaction between those a b c it's a reaction which occurs when heating
Answer:
In both cases, that is the mass of 6.02 × 1023 representative particles. The representative particle of CO2 is the molecule, while for Na2S, it is the formula unit.
Explanation:
Answer:
number of moles of the compound
53 mole
Explanation:
Given that:
The total energy liberated = - 2870 kJ ( here , the negative sign typical implies the release of energy due to the combustion reaction)
The equation of the reaction can be represented as:

The energy needed to synthesize 1 mole of compound X = - 54.1 kJ.mol
Thus;
The total energy = numbers of moles of compound × Energy needed to synthesize 1 mole of compound X
Making the numbers of moles of the compound the subject; we have;
numbers of moles of compound = 

number of moles of the compound = 53.04990 mole
number of moles of the compound
53 mole to two significant figure
I believe it to be true. Diamonds are the hardest minerals. Being able to cut through any gem.