Correct Answer:Second option
Solution:The given sequence is:
2.2, 6.6, 11, ...
If we observe the sequence it is an Arithmetic Sequence as the difference between two consecutive terms is the same.
6.6 - 2.2 = 4.4
11 - 6.6 = 4.4
First we find the general term for this sequence.


first term = 2.2
d = 4.4
So,

This general term will be placed inside the summation sign with limits from 1 to 5 to give the sum of first 5 terms of the given sequence. So the correct answer is Second Option
Answer:
Question 4: -11
Question 5: -7
Step-by-step explanation:
Four
Every triangle has 180 degrees.
So all three angles add to 180
<em><u>Equation</u></em>
60 + 80 + x + 51 = 180
<em><u>Solution</u></em>
Combine the like terms on the left. This is the first time I've seen x be a negative value. Almost all of the time it isn't, which should make you wonder.
191 + x = 180
Subtract 191 from both sides.
191 - 191 + x = 180 - 191
x = - 11
Five
If a triangle is a right triangle and one of the angles is 45, then so is the other one.
<em><u>Proof</u></em>
a + 45 + 90 = 180 Combine like terms on the left
a + 135 = 180 Subtract 135 on both sides.
a + 135-135=180-135 Combine the like terms
a = 45
<em><u>Statement</u></em>
That means 52 + x = 45 and here is another negative answer. Subtract 52 from both sides
52 - 52 + x = 45 - 52 Combine like terms.
x = - 7
Given a complex number in the form:
![z= \rho [\cos \theta + i \sin \theta]](https://tex.z-dn.net/?f=z%3D%20%5Crho%20%5B%5Ccos%20%5Ctheta%20%2B%20i%20%5Csin%20%5Ctheta%5D)
The nth-power of this number,

, can be calculated as follows:
- the modulus of

is equal to the nth-power of the modulus of z, while the angle of

is equal to n multiplied the angle of z, so:
![z^n = \rho^n [\cos n\theta + i \sin n\theta ]](https://tex.z-dn.net/?f=z%5En%20%3D%20%5Crho%5En%20%5B%5Ccos%20n%5Ctheta%20%2B%20i%20%5Csin%20n%5Ctheta%20%5D)
In our case, n=3, so

is equal to
![z^3 = \rho^3 [\cos 3 \theta + i \sin 3 \theta ] = (5^3) [\cos (3 \cdot 330^{\circ}) + i \sin (3 \cdot 330^{\circ}) ]](https://tex.z-dn.net/?f=z%5E3%20%3D%20%5Crho%5E3%20%5B%5Ccos%203%20%5Ctheta%20%2B%20i%20%5Csin%203%20%5Ctheta%20%5D%20%3D%20%285%5E3%29%20%5B%5Ccos%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%2B%20i%20%5Csin%20%283%20%5Ccdot%20330%5E%7B%5Ccirc%7D%29%20%5D)
(1)
And since

and both sine and cosine are periodic in

, (1) becomes
The area of the red part is greater than the area of the blue part.