To solve this problem it is necessary to apply an energy balance equation in each of the states to assess what their respective relationship is.
By definition the energy balance is simply given by the change between the two states:

Our states are given by



In this way the energy balance for the states would be given by,



Therefore the states of energy would be
Lowest : 0.9eV
Middle :7.5eV
Highest: 8.4eV
Answer: Total work done on the block is 3670.5 Joules.
Step by step:
Work done:

With F the force, d the displacement, and theta the angle of action (which is 0 since the block is pushed along the direction of displacement, and cos 0 = 1)

Given:
F = 75 N
m = 31.8 kg
Final velocity 
In order to calculate the Work we need to determine the displacement, or distance the block travels. We can use the information about F and m to first figure out the acceleration:

Now we can determine the displacement from the following formula:

Here, the initial displacement is 0 and initial velocity is also 0 (at rest):

Now we still have "t" as unknown. But we are given one more bit of information from which this can be determined:

(using vf as final velocity, and tf as final time)
So it takes about 6.44 seconds for the block to move. This allows us to finally calculate the displacement:

and the corresponding work:

Technically it is referred to as <em>star brightness</em> but yes you have the general idea.
Answer:
Explanation:
Total weight
My weight+weight of belongings
660+1100=1760N.
a. Work done by the elevator to travel a total height of 15.2m
Using newton law of motion
ΣF = ma
There are only two forces acting upward, the weight and the reaction by the elevator
Also note it is moving at constant velocity then, a=0
N - W=0
Then, N=W
N=1760N
So, workdone is given as
Wordone, =force × distance
Work done=1760×15.2
W=26,752J
W=26.752KJ
b. Work done on me alone is still need to go through the same process but will remove the weight of the belonging
Therefore,
Weight now = 660N
And using the same equation of motion
ΣF = ma
Comstant velocity, a=0
N - W=0
N=W
N=660N
Then, workdone
W=F×d
W=660×15.2
W=10,032J
W=10.032KJ
Answer:
I am pretty sure it is A!
:D