1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solong [7]
3 years ago
9

The energy levels of a particular quantum object are -11.7 eV, -4.2 eV, and -3.3 eV. If a collection of these objects is bombard

ed by an electron beam so that there are some objects in each excited state, what are the energies of the photons that will be emitted?
Physics
1 answer:
gogolik [260]3 years ago
8 0

To solve this problem it is necessary to apply an energy balance equation in each of the states to assess what their respective relationship is.

By definition the energy balance is simply given by the change between the two states:

|\Delta E_{ij}| = |E_i-E_j|

Our states are given by

E_1 = -11.7eV

E_2 = -4.2eV

E_3 = -3.3eV

In this way the energy balance for the states would be given by,

|\Delta E_{12}| = |E_1-E_2|\\|\Delta E_{12}| = |-11.7-(-4.2)|\\|\Delta E_{12}| = 7.5eV\\

|\Delta E_{13}| = |E_1-E_3|\\|\Delta E_{13}| = |-11.7-(-3.3)|\\|\Delta E_{13}| = 8.4eV

|\Delta E_{23}| = |E_2-E_3|\\|\Delta E_{23}| = |-4.2-(-3.3)|\\|\Delta E_{23}| = 0.9eV

Therefore the states of energy would be

Lowest : 0.9eV

Middle :7.5eV

Highest: 8.4eV

You might be interested in
Convert <img src="https://tex.z-dn.net/?f=%5Cfrac%7B%280.779mg%29%28min%29%7D%7BL%7D" id="TexFormula1" title="\frac{(0.779mg)(mi
Orlov [11]

The number converted is 0.0467 \frac{(kg)(s)}{m^3}

Explanation:

In order to convert from the original units to the final units, we have to keep in mind the following conversion factors:

1 kg = 1000 g = 10^6 mg

1 min = 60 s

1 m^3 = 1000 L

The original unit that we have is

\frac{mg\cdot min}{L}

Therefore, it can be rewritten as:

=\frac{mg \frac{1}{10^6 mg/kg}\cdot min\cdot  60 s/min}{L\frac{1}{1000L/m^3}}=0.06 \frac{(kg)(s)}{m^3}

Therefore, since the initial number was 0.779, the final value is

0.779\cdot 0.06 \frac{(kg)(s)}{m^3}=0.0467 \frac{(kg)(s)}{m^3}

#LearnwithBrainly

5 0
3 years ago
Hello, I wanted an answer from a mathematician. The number 1.04 is closer to the number 1, 2, 1.25 or 1.5.
babymother [125]

Answer:

Explanation:

Of the 4 numbers given, the answer is 1 or A

If you take the absolute value of abs(1 - 1.04) you get 0.04.

(2 - 1.04) = 0.96

1.25 - 1.04 = .21

1.5 - 1.04 = 0.46

The last three are all larger than 0.04

Note: absolute value means the positive difference between 2 numbers (even  though it is negative). If it is negative, absolute value makes it positive.

3 0
2 years ago
A car travels in a straight line covering a total distance of 90.0 miles in 60.0 minutes. Which one of the following statements
andrezito [222]

Answer:

E) The average velocity of the car is 90.0 miles per hour in the direction of motion.

Explanation:

Given;

distance covered by the car, d = 90 miles

time taken, t = 60 minutes = 1 hour

The average velocity of the car is given by change in displacement per change in time;

V = Δd / Δt

V = \frac{x_f - x_o}{t_f -t_o} = \frac{90-0}{1-0} \\\\V = 90 \ miles/hour

Therefore, the average velocity of the car is 90.0 miles per hour in the direction of motion.

7 0
3 years ago
What is the threshold frequency ν0 of cesium? note that 1 ev (electron volt)=1.60×10−19 j. express your answer numerically in he
andreyandreev [35.5K]

The threshold frequency fo of Cesium is 4.83 × 10¹⁴ Hz

<h3>Further explanation</h3>

The term of package of electromagnetic wave radiation energy was first introduced by Max Planck. He termed it with photons with the magnitude is:

\large {\boxed {E = h \times f}}

<em>E = Energi of A Photon ( Joule )</em>

<em>h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )</em>

<em>f = Frequency of Eletromagnetic Wave ( Hz )</em>

The photoelectric effect is an effect in which electrons are released from the metal surface when illuminated by electromagnetic waves with large enough of radiation energy.

\large {\boxed {E = \frac{1}{2}mv^2 + \Phi}}

\large {\boxed {E = qV + \Phi}}

<em>E = Energi of A Photon ( Joule )</em>

<em>m = Mass of an Electron ( kg )</em>

<em>v = Electron Release Speed ( m/s )</em>

<em>Ф = Work Function of Metal ( Joule )</em>

<em>q = Charge of an Electron ( Coulomb )</em>

<em>V = Stopping Potential ( Volt )</em>

Let us now tackle the problem!

<u>Given:</u>

Φ = 2.1 eV = 2 × 1.60 × 10⁻¹⁹ Joule = 3.20 × 10⁻¹⁹ Joule

<u>Unknown:</u>

fo = ?

<u>Solution:</u>

\Phi = h \times fo

3.20 \times 10^{-19} = 6.63 \times 10^{-34} \times fo

fo = ( 3.20 \times 10^{-19} ) \div ( 6.63 \times 10^{-34} )

\large {\boxed{fo = 4.83 \times 10^{14} ~ Hz} }

<h3>Learn more</h3>
  • Photoelectric Effect : brainly.com/question/1408276
  • Statements about the Photoelectric Effect : brainly.com/question/9260704
  • Rutherford model and Photoelecric Effect : brainly.com/question/1458544
  • Photoelectric Threshold Wavelength : brainly.com/question/10015690

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Quantum Physics

Keywords: Quantum , Photoelectric , Effect , Threshold , Frequency , Electronvolt

8 0
3 years ago
Read 2 more answers
How do you rationalize the tension being used in Tennis Racket strings using the concept of impulse and momentum?
zheka24 [161]

Answer:

The momentum, ΔP, and therefore, kinetic energy given to the ball in a serve is the result of the product of the tension force, 'F', in the string and the time of contact, Δt, between the ball and the string

ΔP = F × Δt

Explanation:

The impulse, ΔP, is the produce of the force, 'F', applied to a body for a given period of time, Δt', that gives motion to the body, and it is equal to the change of momentum of the body

ΔP = F × Δt

The momentum, 'P', of a body is the product of the mass, 'm', of the body and its velocity, 'v'

P = m × v

Tension is the axial pulling force of a string

T = Axial Force, F_{axial}

The tension used in Tennis Racket strings is between 40 to 65 lbs.

When high tension is used in the string, the string is taut, and the contact duration between the Racket string and the ball is minimal, and the player needs to use more force to obtain a high momentum, and therefore, energy in the ball, which reduces control, and increase stress, as force is more emphasized

When low tension is used in the string, the Tennis Racket strings are more elastic. During a serve, the ball pushes the strings further back into the racket, such that the ball spends more time in contact with the string, (Δt is larger), and therefore, the impulse, F·Δt = ΔP, given to the ball is larger, therefore, the ball has a larger change in momentum, and therefore more energy in the intended direction.

However, a very slackened string will increase the increase area and time (large Δt) of contact of the ball and the racket such that the force given to the ball, F = ΔP/(large Δt) is reduced and therefore reduce the likelihood of gaining points from a serve against an opponent with a much forceful return of a serve.

3 0
3 years ago
Other questions:
  • A particular molecule has a small molecular mass of approximately 1000 daltons. What should be done to make this molecule more a
    12·1 answer
  • During the expansion of the early universe, which two interactions were the last to separate? a. the strong and weak interaction
    12·1 answer
  • Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
    7·1 answer
  • Which statement is the correct representation of these electric field lines?
    7·2 answers
  • Work occurs when
    14·1 answer
  • If the speed of a wave doubles while the frequency remains the same, it means
    12·1 answer
  • A ball is shot from the ground into the air. At a height of 9.1 m, the velocity is observed to be v = (7.6 + 6.7 ) m/s, with hor
    5·1 answer
  • An electron traveling with a speed v enters a uniform magnetic field directed perpendicular to its path. The electron travels fo
    10·1 answer
  • A block of mass 0.260 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that th
    6·1 answer
  • If a truck loses 5610 J of energy as it slows down due to an external force of 425 N, what distance will it have moved after the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!