1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vesna_86 [32]
4 years ago
11

What is the simplified form of (x+9)/8 minus (x+3)/(x+2)?

Mathematics
2 answers:
Murrr4er [49]4 years ago
6 0
Here is the work to help you understand the problem.
\frac{x+9}{8}-\frac{x+3}{x+2}

\mathrm{Find\:the\:least\:common\:denominator\:} \ \textgreater \  8\left(x+2\right)

\mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{\left(x+9\right)\left(x+2\right)}{8\left(x+2\right)}-\frac{\left(x+3\right)\cdot \:8}{8\left(x+2\right)}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{\left(x+9\right)\left(x+2\right)-8\left(x+3\right)}{8\left(x+2\right)}

Expand \left(x+9\right)\left(x+2\right)-8\left(x+3\right)

\left(x+9\right)\left(x+2\right)
\mathrm{Distribute\:parentheses\:using}: \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd
Where\; a=x,\:b=9,\:c=x,\:d=2

x\cdot \:x+x\cdot \:2+9\cdot \:x+9\cdot \:2 \ \textgreater \  \mathrm{Add\:similar\:elements:}\:2x+9x=11x

xx+11x+2\cdot \:9 \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}

xx=\:x^{1+1}=\:x^2 \ \textgreater \  x^2+11x+2\cdot \:9 \ \textgreater \  \mathrm{Multiply\:the\:numbers:}\:9\cdot \:2=18

x^2+11x+18 \ \textgreater \  x^2+11x+18-8\left(x+3\right)

-8\left(x+3\right) \ \textgreater \  \mathrm{Distribute\:parentheses\:using}: \:a\left(b+c\right)=ab+ac
Where\;a=-8,\:b=x,\:c=3

-8\cdot \:x-8\cdot \:3 \ \textgreater \  \mathrm{Multiply\:the\:numbers:}\:8\cdot \:3=24 \ \textgreater \  -8x-24

x^2+11x+18-8x-24 \ \textgreater \  \mathrm{Group\:like\:terms} \ \textgreater \  x^2+11x-8x+18-24

\mathrm{Add\:similar\:elements:}\:11x-8x=3x \ \textgreater \  x^2+3x+18-24

\mathrm{Add/Subtract\:the\:numbers:}\:18-24=-6 \ \textgreater \  x^2+3x-6

\frac{x^2+3x-6}{8\left(x+2\right)}

Hope this helps!
matrenka [14]4 years ago
5 0
The simplified form of (x+9)/8 - (x+3)/(x+2) is:

x^2+3x-6 over 8 (x+2)

Work:

1. (x+9)(x+2) - (x+3) x 8 over 8 (x+2)

2. (x+9)(x+2) - 8(x+3) over 8(x+2)

3. x^2 + 2x + 9x + 18 - 8x -24 over 8(x+2)

4. x^2 + (2x + 9x - 8x) + (18 - 24) over 8(x+2)

= x^2+3x-6 over 8 (x+2)

You might be interested in
Evaluate 3 to the 2nd power + (8-2)•4-6/3
erma4kov [3.2K]
3^{2}+(8-2)×4-6/3

Always do what's in parentheses first:

3^{2}+6×4-6/3

Then do multiplication and division:

9+24-2

Then addition and subtraction last:

9+24-2=31
8 0
3 years ago
Find the value of c
Daniel [21]

Answer:


Step-by-step explanation:

7x + (2x+27)=180-> 9x= 180-27 -> x=17

5 0
3 years ago
Using the SAS Congruence Theorem
marshall27 [118]

Sorry this got to you super late. At least others looking for the answer can find it.

3 0
3 years ago
Can someone help me solve multiple step equations? For example (7t - 2) - (-3t + 1) = -3(1 - 3t)
artcher [175]

Answer:

t = 0

Step-by-step explanation:

(7t - 2) - (-3t + 1) = -3(1 - 3t)

because you can not do anything inside the parantheses, you distribute. there aren't any numbers on the left side of the parantheses on the left side of the equation so we just imagine the number 1. on the right side of the equation, just distribute normally

[ 1(7t - 2) -1(-3t + 1) = -3(1 - 3t) ]

will be

7t - 2 + 3t - 1 = -3 + 9t

add like terms

10t - 3 = -3 + 9t

subtract 9t from both sides

t - 3 = -3

add 3 to both sides

t = 0

3 0
3 years ago
Find the distance between the two points in simplest radical form.<br> (-5,8) and (-3, 1)
elixir [45]

Given:

The two points are (-5,8) and (-3,1).

To find:

The distance between the given two points in simplest radical form.

Solution:

Distance formula: The distance between two points is

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Using distance formula, the distance between (-5,8) and (-3,1) is

d=\sqrt{(-3-(-5))^2+(1-8)^2}

d=\sqrt{(-3+5)^2+(-7)^2}

d=\sqrt{(2)^2+(-7)^2}

d=\sqrt{4+49}

d=\sqrt{53}

Therefore, the distance between two points (-5,8) and (-3,1) is \sqrt{53} units.

3 0
3 years ago
Other questions:
  • Please include work! :)
    10·1 answer
  • Hiiii someone please help me I'm confused please helppp
    11·1 answer
  • What is the range of the exponential function y = (.5)x ?
    13·1 answer
  • Fine x in the equation<br>2x+6=0​
    14·2 answers
  • Graphing on a scatter diagram 9/4x+1/2 (-2, -4) (2, 5)
    8·1 answer
  • alex works for his father assembling clock motors he is paid a piecework rate of $8.50 per motor. this week he assembled 21 moto
    14·2 answers
  • The diagram shows a tile in the shape of a trapezium.
    7·1 answer
  • Between which two numbers does the root square 5 lie
    5·1 answer
  • Can someone help me Worth 100 points
    13·1 answer
  • The table shows the results of spinning a wheel 80 times. What is the relative frequency of the event "spin a 3"?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!