1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
15

How would such an increase in temperature most likely affect earths water cycle?

Biology
1 answer:
aev [14]3 years ago
7 0

Answer:

How would such an increase in temperature most likely affect Earth's water cycle? A. It would reduce ocean evaporation which would result in a decrease in precipitation. ... It would diminish cloud formation which would result in an increase in precipitation.

Explanation:

You might be interested in
Which population factor would INCREASE the population of deer in a given area?
Nastasia [14]

Answer:

Less predators

Explanation:

5 0
2 years ago
Explain how we know that DNA breaks and rejoins during recombination.
alisha [4.7K]

Answer:

It occurs through homologous recombination

Explanation:

GENERAL RECOMBINATION OR HOMOLOGIST

           Previously we defined its general characteristics. We will now describe a molecular model of this recombination, based on the classic Meselson and Radding, modified with the latest advances. Do not forget that we are facing a model, that is, a hypothetical proposal to explain a set of experimental data. Not all points of this model are fully clarified or demonstrated:

           Suppose we have an exogenote and an endogenote, both consisting of double helices. In recombination models, the exogenote is usually referred to as donor DNA, and the endogenote as recipient DNA.

1) Start of recombination: Homologous recombination begins with an endonucleotide incision in one of the donor double helix chains. Responsible for this process is the nuclease RecBCD (= nuclease V), which acts as follows: it is randomly attached to the donor's DNA, and moves along the double helix until it finds a characteristic sequence called c

Once the sequence is recognized, the RecBCD nuclease cuts to 4-6 bases to the right (3 'side) of the upper chain (as we have written above). Then, this same protein, acting now as a helicase, unrolls the cut chain, causing a zone of single-stranded DNA (c.s. DNA) to move with its 3 ’free end

2) The gap left by the displaced portion of the donor cut chain is filled by reparative DNA synthesis.

3) The displaced single chain zone of the donor DNA is coated by subunits of the RecA protein (at the rate of one RecA monomer per 5-10 bases). Thus, that simple chain adopts an extended helical configuration.

4) Assimilation or synapse: This is the key moment of action of RecA. Somehow, the DNA-bound RecA c.s. The donor facilitates the encounter of the latter with the complementary double helix part of the recipient, so that in principle a triple helix is formed. Then, with the hydrolysis of ATP, RecA facilitates that the donor chain moves to the homologous chain of the receptor, and therefore matches the complementary one of that receptor. In this process, the chain portion of the donor's homologous receptor is displaced, causing the so-called "D-structure".

It is important to highlight that this process promoted by RecA depends on the donor and the recipient having great sequence homology (from 100 to 95%), and that these homology segments are more than 100 bases in length.

Note that this synapse involves the formation of a portion of heteroduplex in the double receptor helix: there is an area where each chain comes from a DNA c.d. different parental (donor and recipient).

5) It is assumed that the newly displaced chain of the recipient DNA (D-structure) is digested by nucleases.

6) Covalent union of the ends originating in the two homologous chains. This results in a simple cross-linking whereby the two double helices are "tied." The resulting global structure is called the Holliday structure or joint.

7) Migration of the branches: a complex formed by the RuvA and RuvB proteins is attached to the crossing point of the Holliday structure, which with ATP hydrolysis achieve the displacement of the Hollyday crossing point: in this way the portion of heteroduplex in both double helices.

8) Isomerization: to easily visualize it, imagine that we rotate the two segments of one of the DNA c.d. 180o with respect to the cross-linking point, to generate a flat structure that is isomeric from the previous one ("X structure").

9) Resolution of this structure: this step is catalyzed by the RuvC protein, which cuts and splices two of the chains cross-linked at the Hollyday junction. The result of the resolution may vary depending on whether the chains that were not previously involved in the cross-linking are cut and spliced, or that they are again involved in this second cutting and sealing operation:

a) If the cuts and splices affect the DNA chains that were not previously involved in the cross-linking, the result will be two reciprocal recombinant molecules, where each of the 4 chains are recombinant (there has been an exchange of markers between donor and recipient)

b) If the cuts and splices affect the same chains that had already participated in the first cross-linking, the result will consist of two double helices that present only two portions of heteroduplex DNA.

8 0
3 years ago
NEED HELP ASAP WILL GIVE BRAINLIEST THANK YOU <3
Semmy [17]

Answer:C

Explanation:

5 0
3 years ago
Read 2 more answers
he removal of waste from Florida’s East Bay and Pensacola Bay is intended to speed the bay ecosystem’s natural tendency to do wh
Trava [24]
I think it is D but I am not for sure
7 0
3 years ago
What happens when light waves passes through glasses
Andreyy89
Refraction is an effect that occurs when a light wave, incident at an angle away from the normal, passes a boundary from one medium into another in which there is a change in velocity of the light. Light is refracted when it crosses the interface from air into glass in which it moves more slowly. Since the light speed changes at the interface, the wavelength of the light must change, too. The wavelength decreases as the light enters the medium and the light wave changes direction. We illustrate this concept in Figure 3 by representing incident light as parallel waves with a uniform wavelength . As the light enters the glass the wavelength changes to a smaller value '. Wave "a" passes the air/glass interface and slows down before b, c, or d arrive at the interface. The break in the wave-front intersecting the interface occurs when waves "a" and "b" have entered the glass, slowed down and changed direction. At the next wave-front in the glass, all four waves are now traveling with the same velocity and wavelength
8 0
3 years ago
Other questions:
  • Which object has the same shape as a DNA molecule?
    12·1 answer
  • How does the number of chromosomes in each newly formed cell compare to the number of chromosomes in the parent cell
    7·1 answer
  • To which person would this event be of concern? the pollution of the river after the cutting of the old forest.
    15·1 answer
  • What is at least one reason why science cannot help to answer ethical or moral social issues?
    10·1 answer
  • Both algae and amoeba are in the domain Eukarya. Which of the following characteristics do they most likely share?
    8·2 answers
  • What is the utility of tissue in multicellular organisms? <br>plz help !!!!!!!!​
    12·1 answer
  • The advantage of asexual reproduction is<br> Sexual reproduction helps to increase
    12·1 answer
  • How does your choice of behaviour effect your ability to achieve your goals?​
    9·1 answer
  • B. Would all insertion or deletion mutations lead to a change in the amino acid
    14·1 answer
  • Write the molecular formula of caustic soda using criss cross method​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!