Answer:
8 inches.
Step-by-step explanation:
3 1/4 + 4 3/4
= 3 + 4 + 1/4 + 3/4
= 7 + 4/4
= 7 + 1
= 8 inches.
Answer:
The sum of two numbers is 84:
u + y = 84
The difference of the two numbers is 32:
u - y = 32
Answer:
B 1
Step-by-step explanation:
Since the divisor is in the form of <em>x - c</em>, use what is called Synthetic Division. Remember, in this formula, -c gives you the OPPOSITE terms of what they really are, so do not forget it. Anyway, here is how it is done:
2| -2 1 5 0 4 1
↓ -4 -6 -2 -4 0
_________________
-2 -3 -1 -2 0 1→ -2x⁴ - 3x³ - x² -2x + [x - 2]⁻¹
You start by placing the <em>c</em> in the top left corner, then list all the coefficients of your dividend [-2x⁵ + x⁴ + 5x³ + 4x + 1]. You bring down the original term closest to <em>c</em> then begin your multiplication. Now depending on what symbol your result is, tells you whether the next step is to <em>subtract</em> or <em>add</em>, then you continue this process starting with multiplication all the way up until you reach the end. Now, when the last term is 0, that means you have no remainder. Finally, your quotient is one degree less than your dividend, so that -2 in your quotient can be a -2x⁴, and the -3 [x³] follows right behind it, then 1 [-x²], -2[x], and finally, [1\x - 2] (remainder is 1, so set it over your denominator, which is the divisor), giving you the other factor of -2x⁴ - 3x³ - x² -2x + [x - 2]⁻¹.
I am joyous to assist you anytime.
**
Answer:
In this equation, the y-intercept (+ 5) represents the original height of the plant. 2x represents the amount of growth multiplied by the number of days, x.
Step-by-step explanation:
Answer:
8 bags of pretzels
Step-by-step explanation:
Let x represent the number of bags of pretzels Tim buys. We assume he spends exactly $20 on exactly 12 bags of snack food. Then his purchase is ...
1.50x + 2.00(12-x) = 20.00
-0.50x +24.00 = 20.00 . . . eliminate parentheses, collect terms
-0.50x = -4.00 . . . . . . . . . . .subtract 24
x = 8 . . . . . . . . . . divide by -0.50
Tim will buy 8 bags of pretzels.