Answer:
Both are inverse pairs
Step-by-step explanation:
Question 11

(a) Rename g(x) as y

(b) Solve for x :

(c) Multiply each side by ⅝

(d) Switch x and y

(e) Rename y as the inverse function

(f) Compare with your function

f(x) and g(x) are inverse functions.
The graphs of inverse functions are reflections of each other across the line y = x.
In the first diagram, the graph of ƒ(x) (blue) is the reflection of g(x) (red) about the line y = x (black)
Question 12
h(x)= x - 2
(a) Rename h(x) as y
y = x - 2
(b) Solve for x:
x = y + 2
(c) Switch x and y
y = x + 2
(e) Rename y as the inverse function
h⁻¹(x) = x + 2
(f) Compare with your function
f(x) = x + 2
f(x) = h⁻¹(x)
h(x) and ƒ(x) are inverse functions.
The graph of h(x) (blue) reflects ƒ(x) (red) across the line y = x (black).
35 students would not know any of the three languages, because if 30 know French, 19 knew German, and 16 knew Russian, that must mean that 65 students know at least one of the three languages. So you subtract 65 from 100 and end up with 35
Answer:
24 cm²
Step-by-step explanation:
Z zadanego powyżej pytania uzyskano następujące dane:
Obwód (obwód) = 32 cm
Wysokość (h) = 3 cm
Obszar rombu (A) =?
Następnie określimy długość boku rombu. Można to uzyskać w następujący sposób:
Obwód, czyli obwód (P) = 32 cm
Strona (y) =?
P = 4 s
32 = 4 s
Podziel obie strony przez 4
s = 32/4
s = 8 cm
Stąd długość boku rombu wynosi 8 cm
Na koniec określimy obszar rombu w następujący sposób:
Długość boków = 8 cm
Wysokość (h) = 3 cm
Obszar rombu (A) =?
A = sh
A = 8 × 3
A = 24 cm²
Dlatego obszar rombu jest
24 cm².
Answer:
The weighted average is of 69.94.
Step-by-step explanation:
Weighted average:
The weighed average is found multiplying each grade by its respective weight.
The grades, and weights are:
67 on the lab, with a weight of 23% = 0.23
69 on the first major test, with a weight is 21.5% = 0.215
85 on the second major test, with a weight is 21.5% = 0.215.
63 on the final exam, with a weight of 34% = 0.34.
Weighted average:

The weighted average is of 69.94.
Answer:
In this case, the equation that models the value of an initial investment of P dollars in t years at an annual interest rate of r is given by A = Pert.
Step-by-step explanation: