solution:
Z1 = 5(cos25˚+isin25˚)
Z2 = 2(cos80˚+isin80˚)
Z1.Z2 = 5(cos25˚+isin25˚). 2(cos80˚+isin80˚)
Z1.Z2 = 10{(cos25˚cos80˚ + isin25˚cos80˚+i^2sin25˚sin80˚) }
Z1.Z2 =10{(cos25˚cos80˚- sin25˚sin80˚+ i(cos25˚sin80˚+sin25˚cos80˚))}
(i^2 = -1)
Cos(A+B) = cosAcosB – sinAsinB
Sin(A+B) = sinAcosB + cosAsinB
Z1.Z2 = 10(cos(25˚+80˚) +isin(25˚+80˚)
Z1.Z2 = 10(cos105˚+ isin105˚)
Answer:
0.1225
Step-by-step explanation:
Given
Number of Machines = 20
Defective Machines = 7
Required
Probability that two selected (with replacement) are defective.
The first step is to define an event that a machine will be defective.
Let M represent the selected machine sis defective.
P(M) = 7/20
Provided that the two selected machines are replaced;
The probability is calculated as thus
P(Both) = P(First Defect) * P(Second Defect)
From tge question, we understand that each selection is replaced before another selection is made.
This means that the probability of first selection and the probability of second selection are independent.
And as such;
P(First Defect) = P (Second Defect) = P(M) = 7/20
So;
P(Both) = P(First Defect) * P(Second Defect)
PBoth) = 7/20 * 7/20
P(Both) = 49/400
P(Both) = 0.1225
Hence, the probability that both choices will be defective machines is 0.1225
Answer:
<u>The simplest radical form of this mathematical expression is - 3√3</u>
Step-by-step explanation:
1. Let's write in a mathematical expression the information given:
-4 the square root of 12 + the square root of 75
-4 (√12) + √75
-4 (√4 * 3) + (√25 * 3) (12 = 4 * 3 and 75 = 25 * 3)
-4 (2 √3) + 5 √3
-8 √3 + 5√3
- 3 √3
The result is- 3 square root of 3.
<u>The simplest radical form of this mathematical expression is - 3√3</u>
Answer:
570
Step-by-step explanation: