Answer:
4. both blocks will both have the same amount of kinetic energy.
Explanation:
When the blocks are released free from the compression force, the spring exerts equal and opposite force on each block but the block with heavier (double) mass will attain slower ( half ) speed as compared to the lighter block according to the law of inertia. This works in synchronization to energy conservation.
Spring force is given as:

where:
length of compression in the spring
<u>We know kinetic energy is given by:</u>

Hence the kinetic energy of both the blocks is equal when they are released to move free.
Answer:
t = 123.59s
Explanation:
For the launch pad section:
Vf = Vo + a*t where Vo=0.
Vf = 35*25 = 875m/s
The distance traveled during the launch:

Now the projectile motion, we know that its initial speed is the speed calculated previously and the initial height is the y-component of the previously calculated distance.

where d= 10937.5m; Vo=875m/s.
Solving for t:
t1 = -11.093s t2 = 98.59s
So, the total time of flight will be:

Answer:
4.1 m
Explanation:
Given :
Mass of the block = m = 2 kg.
Initial velocity =
= 8 m/s
Angle of the incline = α = 30°
Coefficient of friction = μ = 0.35
Distance moved up the incline is calculated using the work energy theorem.
Work done by the net force = change in kinetic energy of the object.
Net work = work done by friction + work done by the gravity component.
(- mg sin 30 - μ mg cos 30 ) d = 
m cancels out when divided on both sides with m.
- [(9.8 sin 30 - ( 0.35 × 9.8 × cos 30) ] d = 1/2 ( 0² - 8² )
⇒ -7.87 d = -32
⇒ Distance traveled up the incline = d = 4.0658 m = 4.1 m
The prongs on the plug and the wire inside<span> the </span>cord<span> are </span>metal<span> but they are </span>surrounded<span> by plastic or rubber insulation so you do not get shocked when you touch the </span>cord
Answer:
its velocity is 51, or 51.42 to be exact it would be: 51.4285714286