Answer:
The unit is the barn, which is equal to 10-28 m^2 or 10-24 cm^2
Explanation:
The standard unit for measuring a nuclear cross section (denoted as σ)
Answer: 15.66 °
Explanation: In order to solve this proble we have to consirer the Loretz force for charge partcles moving inside a magnetic field. Thsi force is given by:
F=q v×B = qvB sin α where α is teh angle between the velocity and magnetic field vectors.
From this expression and using the given values we obtain the following:
F/(q*v*B) = sin α
3.8 * 10^-13/(1.6*10^-19*8.9*10^6* 0.96)= 0.27
then α =15.66°
Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !
<h3>Hello there!</h3>
Here, you are looking for the amount of heat put in for water, at a mass of 187 grams, to change by 80 degrees.
The equation commonly accepted to find the answer to questions like these is the specific heat formula.
The equation is Q = mc∆T, where Q is the amount of energy put in to raise the temperature by a certain amount, m is the mass, c is the specific heat capacity, and ΔT is the amount of temperature change.
The information given:
m = 187 grams
c = specific heat capacity of water, or in this case 1 calorie, or 4.184 joules (which is what we will be using)
ΔT = 80 degrees
Now just plug everything in to solve.
Q = 187 * 4.184 * 80
Q = 62592.64
So you have your answer: 62592.64 joules.
Hope this helped!
Answer:
Bulk modulus = 1.35 ×
Pa
Explanation:
given data
density = 1400 kg/m³
frequency = 370 Hz
wavelength = 8.40 m
solution
we get here bulk modulus of the liquid that is
we know Bulk Modulus =
...............
here
is density i.e 1400 kg/m³
and v is = frequency × wavelength
v = 370 × 8.40 = 3108 m/s
so here bulk modulus will be as
Bulk modulus = 3108² × 1400
Bulk modulus = 1.35 ×
Pa