I think the answer is true
The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
Answer:
The nail will stick to the bar magnet because it will become magnetized, and it's metal. The presence of the nearby north pole rearranges the magnetic domains inside the steel so that their south poles all point toward the north pole of the permanent magnet. As a result, the other end of the nail becomes a north pole.Magnets attract iron due to the influence of their magnetic field upon the iron. ... When exposed to the magnetic field, the atoms begin to align their electrons with the flow of the magnetic field, which makes the iron magnetized as well. This, in turn, creates an attraction between the two magnetized objects.
Answer:
39.2m/s
Explanation:
The potential energy the book has right before it falls is equal to the kinetic energy in falling.
PE = KE
mgh = (1/2)mv
2gh=v
v=(2)(9.81)(2)
v=39.24m/s