Answer:
Step-by-step explanation:
Given the definite integral
, we to evaluate it. Using integration by substitution method.
Let u = 1-2x⁵ ...1
du/dx = -10x⁴
dx = du/-10x⁴.... 2
Substitute equation 1 and 2 into the integral function and evaluate the resulting integral as shown;

![= \dfrac{-1}{10} \int\limits {\dfrac{du}{u^5} } \\\\= \dfrac{-1}{10} \int\limits {{u^{-5}du } \\= \dfrac{-1}{10} [{\frac{u^{-5+1}}{-5+1}] \\\\= \dfrac{-1}{10} ({\frac{u^{-4}}{-4})\\\\](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%5Cint%5Climits%20%7B%5Cdfrac%7Bdu%7D%7Bu%5E5%7D%20%7D%20%20%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%5Cint%5Climits%20%7B%7Bu%5E%7B-5%7Ddu%20%7D%20%20%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%5B%7B%5Cfrac%7Bu%5E%7B-5%2B1%7D%7D%7B-5%2B1%7D%5D%20%20%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%28%7B%5Cfrac%7Bu%5E%7B-4%7D%7D%7B-4%7D%29%5C%5C%5C%5C)

substitute u = 1-2x⁵ into the result

Hence

Answer:
Here is your answer:
5x + 2 < 32
solution:
5x+ 2 < 32
or, 5x < 32-2
or, 5x < 30
or, 5x < 30/2
or, 5x < 15
or, x < 15/3
or, x < 5
therefore, x < 5 <u>ans</u>
<em><u>Hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>you</u></em>
It's too blurry to read. If you tell me what it says, I'll try to give you an answer.
Answer:75% ; 50%
Step-by-step explanation:
The answer is 32.7 b so the answer is 105 over 10