The growth of the plant last year was 25 inches if the normal growth was ten inches more than twice the amount of last year.
<h3>What is linear equation?</h3>
It is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.
If in the linear equation, one variable is present, then the equation is known as the linear equation in one variable.
The normal yearly growth of a plant is 60 inches.
Let's suppose the growth of the plant last year was x
The normal growth was ten inches more than twice the amount of last year.
From the above statement:
10 + 2x = 60
2x = 50
x = 25 inches
Thus, the growth of the plant last year was 25 inches if the normal growth was ten inches more than twice the amount of last year.
Learn more about the linear equation here:
brainly.com/question/11897796
#SPJ1
Download photo math rate 5 <3
Let's to the first example:
f(x) = x^2 + 9x + 20
Ussing the formula of basckara
a = 1
b = 9
c = 20
Delta = b^2 - 4ac
Delta = 9^2 - 4.(1).(20)
Delta = 81 - 80
Delta = 1
x = [ -b +/- √(Delta) ]/2a
Replacing the data:
x = [ -9 +/- √1 ]/2
x' = (-9 -1)/2 <=> - 5
Or
x" = (-9+1)/2 <=> - 4
_______________
Already the second example:
f(x) = x^2 -4x -60
Ussing the formula of basckara again
a = 1
b = -4
c = -60
Delta = b^2 -4ac
Delta = (-4)^2 -4.(1).(-60)
Delta = 16 + 240
Delta = 256
Then, following:
x = [ -b +/- √(Delta)]/2a
Replacing the information
x = [ -(-4) +/- √256 ]/2
x = [ 4 +/- 16]/2
x' = (4-16)/2 <=> -6
Or
x" = (4+16)/2 <=> 10
______________
Now we are going to the 3 example
x^2 + 24 = 14x
Isolating 14x , but changing the sinal positive to negative
x^2 - 14x + 24 = 0
Now we can to apply the formula of basckara
a = 1
b = -14
c = 24
Delta = b^2 -4ac
Delta = (-14)^2 -4.(1).(24)
Delta = 196 - 96
Delta = 100
Then we stayed with:
x = [ -b +/- √Delta ]/2a
x = [ -(-14) +/- √100 ]/2
We wiil have two possibilities
x' = ( 14 -10)/2 <=> 2
Or
x" = (14 +10)/2 <=> 12
________________
To the last example will be the same thing.
f(x) = x^2 - x -72
a = 1
b = -1
c = -72
Delta = b^2 -4ac
Delta = (-1)^2 -4(1).(-72)
Delta = 1 + 288
Delta = 289
Then we are going to stay:
x = [ -b +/- √Delta]/2a
x = [ -(-1) +/- √289]/2
x = ( 1 +/- 17)/2
We will have two roots
That's :
x = (1 - 17)/2 <=> -8
Or
x = (1+17)/2 <=> 9
Well, this would be your answers.