Answer:
Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change–melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon dioxide (CO2) and other greenhouse gas emissions from human activity, accounting for approximately 14 percent of total anthropogenic emissions globally and about 27 percent in the U.S.
Fortunately, transportation technologies and strategies are emerging that can help to meet the climate challenge. These include automotive and fuel technologies, intelligent transportation systems (ITS), and mobility management strategies that can reduce the demand for private vehicles. While the climate change benefits of innovative engine and vehicle technologies are relatively well understood, there are fewer studies available on the energy and emission impacts of ITS and mobility management strategies. In the future, ITS and mobility management will likely play a greater role in reducing fuel consumption. Studies are often based on simulation models, scenario analysis, and limited deployment experience. Thus, more research is needed to quantify potential impacts. Of the nine ITS technologies examined, traffic signal control, electronic toll collection, bus rapid transit, and traveler information have been deployed more widely and demonstrated positive impacts (but often on a limited basis). Mobility management approaches that have established the greatest CO2 reduction potential, to date, include road pricing policies (congestion and cordon) and carsharing (short-term auto access). Other approaches have also indicated CO2 reduction potential including: low-speed modes, integrated regional smart cards, park-and-ride facilities, parking cash out, smart growth, telecommuting, and carpooling.
Explanation:
Well, an endoskeleton is an internal skeleton, like humans have.
Pro: Bones do not get broke as easily, since they are inside of the body. Bones that break also heal more quickly in an endoskeleton, since they have tissue and blood surrounding it and transferring nutrients.
Con: The flesh can get easily damaged. There is no shedding with endoskeletons, so a new skeleton cannot be grown in the event of an injury.
Answer:
Option c. Only the haploid organism may also reproduce asexually.
Explanation:
It is scientifically approved that algae and fungi are able to form true asexual spores. This process of spore formation involves mitosis and resultant spore is called mito-spore which develop into new offspring.
Reference: Smith, B. A., and DANIEL D. Burke. "Evidence for the presence of messenger ribonucleic acid in Allomyces macrogynus mitospores." Journal of bacteriology 138.2 (1979): 535-541.
Answer:
A. Some pea plants grow slowly and have few offspring
Explanation:
This contrast the reason why Mendel chose pea plants.
They grow rapidly and produce a lot of offspring.