The position of equilibrium lies far to the right, with products being favored.
Plants that have nigrogen fixing bacteria in their roots are called
legumes.
Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps
Answer:
The volumes are both, accurate and precise.
Explanation:
In the measurement of a set, precision refers to how much coincidence exists in the measurements of an specific value, as the measurements are close, we can say the volumes are precise.
Accuracy means the agreement that exists between the average of one
large series of measurements and the value of measurement
Media is 4,96 ml and I wanted to measure 5 ml. It is also close.
Answer:
This solution has a volume of 98.4 mL
Explanation:
Step 1: Data given
Molarity of AgClO4 solution = 1.27 mol/L
Number of moles AgClO4 = 125 mmol = 0.125 mol
Molar mass of AgClO4= 207.32 g/mol
Step 2: Calculate volume of the 1.27 M solution
Molarity = moles / volume
Volume = moles / molarity
Volume = 0.125 moles / 1.27 mol /L
Volume = 0.0984 L = 98.4 mL
This solution has a volume of 98.4 mL