1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
3 years ago
12

What is the answer to this equation log10^x =3

Mathematics
1 answer:
kvv77 [185]3 years ago
4 0

Answer:

x=3

Step-by-step explanation:

The exponent of a factor inside a logarithm can be expanded to the front of the expression using the third law of logarithms. The third law of logarithms states that the logarithm of a power of  x  is equal to the exponent of that power times the logarithm of  x

(log_b(x^n)=n*log_b(x))

Now let's implement this with the values we know.

x*log(10)=3

The logarithm base 10 of 10 is 1.

x*1=3

x=3

You might be interested in
Is 17/40 closest to 0/40, 20/40, or 40/40?
Bezzdna [24]
It’s closest to 20/40 gave a good day
3 0
3 years ago
Read 2 more answers
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
Help mehhhhhhh pleaseeeeeeeee
Lyrx [107]

Answer:

1/2

Step-by-step explanation:

Because there are 2 numbrs that are greater than 3.

Hope this helped!

Stay Safe!

3 0
3 years ago
What best describes the pair of angles below?
user100 [1]

Answer:

i want to see the choices

5 0
3 years ago
Lori had $126.89 in her bank account. She deposited $21.49 into it and then wrote a check for her car repairs for $156.61.
kompoz [17]

Answer:

-8.23

Step-by-step explanation:

If Lori had $126.89 in her bank account and she deposited $21.49, she would be adding that to the amount of money in her bank account.

126.89+21.59= 148.48

Then subtract the amount of money the repairs costed.

148.48 - 156.61 = -8.23

Therefore Lori would have a balance of -$8.23.

5 0
3 years ago
Other questions:
  • Subtract:<br> (5x-3t-7)-(x-2t-3)
    12·1 answer
  • How can i show how numbers are related to each other
    9·1 answer
  • Explain how multiplying fractions is similar to multiplying whole numbers and how it is different ?
    7·1 answer
  • Ten students take a test. Five students get a 50. Four students get a 70. If the average score is 55, what was the last student’
    14·2 answers
  • Lee is creating a garden with the dimension shown. He creates paths through the garden along
    11·2 answers
  • What is the meaning of off the cuff ?
    15·2 answers
  • Use the radio table to solve the percent problem
    12·1 answer
  • Un padre tiene actualmente cuatro veces la edad de su hijo. Cuando pasen 5 años, su edad será solo tres veces superior. ¿Qué eda
    12·1 answer
  • Which one please help it’s important
    13·2 answers
  • Identify at least one pair of the following angles
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!