Answer:
The probability that A selects the first red ball is 0.5833.
Step-by-step explanation:
Given : An urn contains 3 red and 7 black balls. Players A and B take turns (A goes first) withdrawing balls from the urn consecutively.
To find : What is the probability that A selects the first red ball?
Solution :
A wins if the first red ball is drawn 1st,3rd,5th or 7th.
A red ball drawn first, there are
places in which the other 2 red balls can be placed.
A red ball drawn third, there are
places in which the other 2 red balls can be placed.
A red ball drawn fifth, there are
places in which the other 2 red balls can be placed.
A red ball drawn seventh, there are
places in which the other 2 red balls can be placed.
The total number of total event is
The probability that A selects the first red ball is




By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
Answer:
4/5
Step-by-step explanation:
formula for slope is (y2-y1)/(x2-x1)
Answer:
A
Step-by-step explanation:
C is located at (5,3).
If you want to reflect this over the y-axis, you need to have the same distance that (5,3) is to the y-axis on both sides.
If you look at your graph you should see that (5,3) is 5 units a way from the y-axis so when you put it on the other side it should be 5 units a way also.
So the reflection will give you (-5,3)
Answer:
The slope intercept form of a line is: y=mx+b.
Step-by-step explanation:
your answer is (a)
gimme brainliest