<u>Answer-</u>
<em>The amount will be </em><em>$8944.62</em><em> after 5 years.</em>
<u>Solution-</u>
We know that,
![\text{FV of annuity}=P[\dfrac{(1+r)^n-1}{r}]](https://tex.z-dn.net/?f=%5Ctext%7BFV%20of%20annuity%7D%3DP%5B%5Cdfrac%7B%281%2Br%29%5En-1%7D%7Br%7D%5D)
Where,
P = Payment = $50 monthly
r = rate of interest compounded monthly= ![3\frac{1}{4}=3.25\%=0.0325](https://tex.z-dn.net/?f=3%5Cfrac%7B1%7D%7B4%7D%3D3.25%5C%25%3D0.0325)
n = number of period = 5 years = 5×12 = 60 months
Putting the values in the formula,
![\text{FV of annuity}=50[\dfrac{(1+0.0325)^{60}-1}{0.0325}]](https://tex.z-dn.net/?f=%5Ctext%7BFV%20of%20annuity%7D%3D50%5B%5Cdfrac%7B%281%2B0.0325%29%5E%7B60%7D-1%7D%7B0.0325%7D%5D)
![=50[\dfrac{(1.0325)^{60}-1}{0.0325}]](https://tex.z-dn.net/?f=%3D50%5B%5Cdfrac%7B%281.0325%29%5E%7B60%7D-1%7D%7B0.0325%7D%5D)
![=50[\dfrac{6.8140-1}{0.0325}]](https://tex.z-dn.net/?f=%3D50%5B%5Cdfrac%7B6.8140-1%7D%7B0.0325%7D%5D)
![=50[\dfrac{5.8140}{0.0325}]](https://tex.z-dn.net/?f=%3D50%5B%5Cdfrac%7B5.8140%7D%7B0.0325%7D%5D)
![=50\times 178.8923](https://tex.z-dn.net/?f=%3D50%5Ctimes%20178.8923)
![=8944.62](https://tex.z-dn.net/?f=%3D8944.62)
Therefore, the amount will be $8944.62 after 5 years.
Less, 12 x 3/4 is 9 as you take 12/4 which is 3 times 3, which gives you 9
since division is separating into equal parts but since there are 15 counters and 8 counters there the same so you can compare them and the final equation would be 15+8/x. let x= the number of kids
(+/-) <span>1 x (+/-) 232 = 232
</span>(+/-) <span>2 x (+/-)116 = 232
</span>(+/-) 4 x (+/-) <span>58 = 232
</span>(+/-) 8 x (+/-) <span>29 = 232
</span>(+/-) 29 x (+/-) <span>8 = 232
</span>(+/-) 58 x (+/-) <span>4 = 232
</span>(+/-) 116 x (+/-) <span>2 = 232
</span>(+/-) 232 x (+/-) 1 = 232