Not sure what index form is but
48=2 times 2 times 2 times 2 times 3
this is also
48=2^3 times 3
I can't read your hand writing
Answer: 5^5=52
Step-by-step explanation:
Answer:
When we have a rational function like:

The domain will be the set of all real numbers, such that the denominator is different than zero.
So the first step is to find the values of x such that the denominator (x^2 + 3) is equal to zero.
Then we need to solve:
x^2 + 3 = 0
x^2 = -3
x = √(-3)
This is the square root of a negative number, then this is a complex number.
This means that there is no real number such that x^2 + 3 is equal to zero, then if x can only be a real number, we will never have the denominator equal to zero, so the domain will be the set of all real numbers.
D: x ∈ R.
b) we want to find two different numbers x such that:
r(x) = 1/4
Then we need to solve:

We can multiply both sides by (x^2 + 3)


Now we can multiply both sides by 4:


Now we only need to solve the quadratic equation:
x^2 + 3 - 4*x - 4 = 0
x^2 - 4*x - 1 = 0
We can use the Bhaskara's formula to solve this, remember that for an equation like:
a*x^2 + b*x + c = 0
the solutions are:

here we have:
a = 1
b = -4
c = -1
Then in this case the solutions are:

x = (4 + 4.47)/2 = 4.235
x = (4 - 4.47)/2 = -0.235
Answer:
2 sqrt(5) OR 4.5
Step-by-step explanation:
You have to know Pythagorean theorem to solve this question.
a^2 + b^2 = c^2
To use this theorem you have to have a right triangle. There are two right triangles in your image. The lower (larger) one has two sides labeled, so you can use Pythagorean thm to find the third side. There's a short cut, bc some right triangles have easy-to-memorize lengths of the sides. 3-4-5 is one of these number sets. A multiple of this is 6-8-10. We could've solved:
b^2 + 8^2 = 10^2
But it would've come out the same. The unlabeled side is 6.
We can use the 6 and the 4 on the smaller right triangle and use the Pythagorean thm again to solve for x.
4^2 + x^2 = 6^2
16 + x^2 = 36 subtract 16 from both sides.
x^2 = 20
Take the square root of both sides.
sqrt (x^2) = sqrt 20
x = 2 sqrt(5) which is approximately 4.472.
2 sqrt(5) is an exact answer if that is what they are asking for. 4.472 is an approximation to the nearest thousandth. It would be 4.47 to the nearest hundredth or 4.5 to the nearest tenth.