In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
f(x) = √3x
g(x) = √48x
(f . g)(x) = ?
Step 02:
(f . g)(x) :
![\text{ (f.g)(x) = }\sqrt[]{3(\sqrt[]{48x)}}](https://tex.z-dn.net/?f=%5Ctext%7B%20%20%20%20%20%20%20%20%20%20%28f.g%29%28x%29%20%3D%20%7D%5Csqrt%5B%5D%7B3%28%5Csqrt%5B%5D%7B48x%29%7D%7D)
![(f.g)(x)\text{ = }\sqrt[]{3(48x)^{\frac{1}{2}}}\text{ }](https://tex.z-dn.net/?f=%28f.g%29%28x%29%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B3%2848x%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5Ctext%7B%20%7D)
(f.g)(x) = 12 √ x
The answer is:
(f.g)(x) = 12 √ x
Since they are both equal to y, you can set -7x and x+8 equal to each other.
- 7x = x + 8 and solve for x then use what you got for x to solve for y
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Opposite sides in a parallelogram are equal
So,
XY=WZ
3a-4=a+2
2a=6
a=3
XW=YZ
b+1=2b
b=1