Step-by-step explanation:
The equation of a parabola with focus at (h, k) and the directrix y = p is given by the following formula:
(y - k)^2 = 4 * f * (x - h)
In this case, the focus is at the origin (0, 0) and the directrix is the line y = -1.3, so the equation representing the cross section of the reflector is:
y^2 = 4 * f * x
= 4 * (-1.3) * x
= -5.2x
The depth of the reflector is the distance from the vertex to the directrix. In this case, the vertex is at the origin, so the depth is simply the distance from the origin to the line y = -1.3. Since the directrix is a horizontal line, this distance is simply the absolute value of the y-coordinate of the line, which is 1.3 inches. Therefore, the depth of the reflector is approximately 1.3 inches.
I think the last one is right hope this helps
Answer:
no you will not use a table
The answer is
g(x) = 4x

Answer:
The correct option is option C max 10A +15B +7C+8D
Step-by-step explanation:
As the complete question is not given here thus the complete question is found online and is attached herewith.
From the data the profit for 1 unit of A is 10, B is 15, C is 7 and D is 8, so the profit function is given as 10A+15B+7C+8D. and as profit is to be maximized so the correct option is option C.