Answer:
It is Commutative
Step-by-step explanation:
An operation ∆ is said to be Commutative if a∆b=b∆a ∀ a,b ∈ ℝ.
Given the operation ∆ defined by:
a∆b=a X b

a∆b=
=3
Similarly, for the right hand side.

Therefore:
b∆a=
=3
These are the two ways of solving this problem and we have in fact shown that the operation is commutative as:
a∆b=b∆a=3
Answer:
i believe its b
Step-by-step explanation:
Answer:
This tells us that:
![A=\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%267%5C%5C5%26-8%5C%5C3%26-9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
So we are saying we have scalars, c and d, such that:
.
So we want to find a way to express this as:
Ax=b where x is the scalar vector,
.
So we can write this as:
![\left[\begin{array}{ccc}5&7\\5&-8\\3&-9\end{array}\right] \left[\begin{array}{ccc}c\\d\end{array}\right] =\left[\begin{array}{ccc}-16\\3\\-15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%267%5C%5C5%26-8%5C%5C3%26-9%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dc%5C%5Cd%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-16%5C%5C3%5C%5C-15%5Cend%7Barray%7D%5Cright%5D)