The mass of radioactive material remaining after 50 years would be 48.79 kilograms
<h3>How to determine the amount</h3>
It is important to note that half - life is the time it takes for the amount of a substance to reduce by half its original size.
Given the radioactive decay formula as
m(t)=120e−0.018t
Where
t= 50 years
m(t) is the remaining amount
Substitute the value of t


Find the exponential value
m(t) = 48.788399
m(t) = 48.79 kilograms to 2 decimal places
Thus, the mass of radioactive material remaining after 50 years would be 48.79 kilograms
Learn more about half-life here:
brainly.com/question/26148784
#SPJ1
I believe you’re correct.
y = 3x - 6
Answer: the answer to this is 5n
Answer:

Step-by-step explanation:
1) First, find the slope of the line. Use the slope formula
. Pick two points on the line and substitute their x and y values into the formula, then solve. I used the points (-5,-4) and (0,-6):
So, the slope of the line is
.
2) Next, use the point-slope formula
to write the equation of the line in point-slope form. (From there, we can convert it to slope-intercept form.) Substitute values for the
,
and
into the formula.
Since
represents the slope, substitute
in its place. Since
and
represent the x and y values of one point on the line, pick any point on the line (any one is fine, it will equal the same thing at the end) and substitute its x and y values in those places. (I chose (0,-6), as seen below.) Then, with the resulting equation, isolate y to put the equation in slope-intercept form:

Answer:
2.38
Step-by-step explanation:
subtract 4.9 on both sides