Consider the equation
.
First, you can use the substitution
, then
and equation becomes
. This equation is quadratic, so
.
Then you can factor this equation:
.
Use the made substitution again:
.
You have in each brackets the expression like
that is equal to
. Thus,
![x^3+5=(x+\sqrt[3]{5})(x^2-\sqrt[3]{5}x+\sqrt[3]{25}) ,\\x^3+1=(x+1)(x^2-x+1)](https://tex.z-dn.net/?f=%20x%5E3%2B5%3D%28x%2B%5Csqrt%5B3%5D%7B5%7D%29%28x%5E2-%5Csqrt%5B3%5D%7B5%7Dx%2B%5Csqrt%5B3%5D%7B25%7D%29%20%2C%5C%5Cx%5E3%2B1%3D%28x%2B1%29%28x%5E2-x%2B1%29%20%20%20)
and the equation is
.
Here
and you can sheck whether quadratic trinomials have real roots:
1.
.
2.
.
This means that quadratic trinomials don't have real roots.
Answer:
If you need complex roots, then
.
Answer:
y=-3
Step-by-step explanation:
y=-2x+5
y=-2(4)+5=-8+5=-3
the answer is 60.75 you had to multiply then add
Answer:
sorry
Step-by-step explanation:
I cant
<span>f(x) = –2/9x + 1/3
</span>y -intercept when x = 0
so
f(x) = –2/9(0) + 1/3 then f(x) = 1/3
answer
<span>y-intercept </span>(0, 1/3)