Let sum of 3 numbers be x.
Average of 3 numbers and 8 =

25 =

100 = x +8
x= 92.
The sum of 3 numbers is 92.
Answer:
1) 
2) ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)
Step-by-step explanation:
1) 
We know that 
So, 
2) ![\sqrt[3]{y^5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D)
We know that ![\sqrt[3]{x}=x^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D)
So, ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D)
We know that ![\sqrt[5]{x}=x^{\frac{1}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B5%7D)
So, ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D)
We know that ![\sqrt[4]{x}=x^{\frac{1}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B4%7D)
So, ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)
I believe it would be 115 plus 56. subtract that from 180. i believe thisbis your answer
They're not equivalent.
(vertical bars) represents the absolute value of x. How it works is that it turns negative numbers positive but leaves 0 and positive numbers alone (hence it gets a number's distance from 0 on the number line).
(square brackets) usually represents the floor function, which returns the largest integer that is less than or equal to x. (The floor of x can also be written as
--- it depends on what your textbook/source says).
To solve
, you first transform it into the equivalent equation
. Then by definition of absolute value, there are only two solutions for the first equation: x = 10 or x = -10.
[x] = 10 has infinitely many solutions. For example, the floor of 10 is 10, so
, thus a solution for the second equation is x = 10
The floor of 10.1 is 10, so
, thus another solution for the second equation is x = 10.1.
The two equations do not have the same solution set (as x = 10.1 does not solve |x| - 3 = 7 but solves [x] = 10), so they're not equivalent.