Answer:
Due to religion you may be obligated to donate 10% or something of that matter.
Step-by-step explanation:
Answer:
6.18% of the class has an exam score of A- or higher.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What percentage of the class has an exam score of A- or higher (defined as at least 90)?
This is 1 subtracted by the pvalue of Z when X = 90. So



has a pvalue of 0.9382
1 - 0.9382 = 0.0618
6.18% of the class has an exam score of A- or higher.
Answer:
it has to be a or d
Step-by-step explanation:
they have 4000 in 1996 but we want 1991.so we get 15 percent of least time but i belive its d
Answer:
35
Step-by-step explanation:
Here we see 5 black keys for every 7 white keys.
So the ratio is 5:7
If we need 49 white keys, find the amount we scale the original ratio by:
49/7 = 7
So we are scaling by a factor of 7.
The number of black keys would be 5 * the scale of 7. = 35
So there should be 35 black keys.
Answer:
24,108.59
Step-by-step explanation:
The future value formula seems applicable.
FV = P(1 +r/n)^(nt)
FV = 20,000(1 +0.0468/12)^(12·4) = 20,000(1.0039^48)
FV ≈ 24,108.59